|
| 1 | +"""Clarifai as retriver to retrieve hits""" |
| 2 | +import os |
| 3 | +from concurrent.futures import ThreadPoolExecutor |
| 4 | +from typing import List, Optional, Union |
| 5 | + |
| 6 | +import requests |
| 7 | + |
| 8 | +import dspy |
| 9 | +from dsp.utils import dotdict |
| 10 | + |
| 11 | +try: |
| 12 | + from clarifai.client.search import Search |
| 13 | +except ImportError as err: |
| 14 | + raise ImportError( |
| 15 | + "Clarifai is not installed. Install it using `pip install clarifai`" |
| 16 | + ) from err |
| 17 | + |
| 18 | + |
| 19 | +class ClarifaiRM(dspy.Retrieve): |
| 20 | + """ |
| 21 | + Retrieval module uses clarifai to return the Top K relevant pasages for the given query. |
| 22 | + Assuming that you have ingested the source documents into clarifai App, where it is indexed and stored. |
| 23 | +
|
| 24 | + Args: |
| 25 | + clarifai_user_id (str): Clarifai unique user_id. |
| 26 | + clarfiai_app_id (str): Clarifai App ID, where the documents are stored. |
| 27 | + clarifai_pat (str): Clarifai PAT key. |
| 28 | + k (int): Top K documents to retrieve. |
| 29 | +
|
| 30 | + Examples: |
| 31 | + TODO |
| 32 | + """ |
| 33 | + |
| 34 | + def __init__( |
| 35 | + self, |
| 36 | + clarifai_user_id: str, |
| 37 | + clarfiai_app_id: str, |
| 38 | + clarifai_pat: Optional[str] = None, |
| 39 | + k: int = 3, |
| 40 | + ): |
| 41 | + self.app_id = clarfiai_app_id |
| 42 | + self.user_id = clarifai_user_id |
| 43 | + self.pat = ( |
| 44 | + clarifai_pat if clarifai_pat is not None else os.environ["CLARIFAI_PAT"] |
| 45 | + ) |
| 46 | + self.k = k |
| 47 | + self.clarifai_search = Search( |
| 48 | + user_id=self.user_id, app_id=self.app_id, top_k=k, pat=self.pat |
| 49 | + ) |
| 50 | + super().__init__(k=k) |
| 51 | + |
| 52 | + def retrieve_hits(self, hits): |
| 53 | + header = {"Authorization": f"Key {self.pat}"} |
| 54 | + request = requests.get(hits.input.data.text.url, headers=header) |
| 55 | + request.encoding = request.apparent_encoding |
| 56 | + requested_text = request.text |
| 57 | + return requested_text |
| 58 | + |
| 59 | + def forward( |
| 60 | + self, query_or_queries: Union[str, List[str]], k: Optional[int] = None |
| 61 | + ) -> dspy.Prediction: |
| 62 | + """Uses clarifai-python SDK search function and retrieves top_k similar passages for given query, |
| 63 | + Args: |
| 64 | + query_or_queries : single query or list of queries |
| 65 | + k : Top K relevant documents to return |
| 66 | +
|
| 67 | + Returns: |
| 68 | + passages in format of dotdict |
| 69 | +
|
| 70 | + Examples: |
| 71 | + Below is a code snippet that shows how to use Marqo as the default retriver: |
| 72 | + ```python |
| 73 | + import clarifai |
| 74 | + llm = dspy.Clarifai(model=MODEL_URL, api_key="YOUR CLARIFAI_PAT") |
| 75 | + retriever_model = ClarifaiRM(clarifai_user_id="USER_ID", clarfiai_app_id="APP_ID", clarifai_pat="YOUR CLARIFAI_PAT") |
| 76 | + dspy.settings.configure(lm=llm, rm=retriever_model) |
| 77 | + ``` |
| 78 | + """ |
| 79 | + queries = ( |
| 80 | + [query_or_queries] |
| 81 | + if isinstance(query_or_queries, str) |
| 82 | + else query_or_queries |
| 83 | + ) |
| 84 | +self.clarifai_search.top_k = k if k is not None else self.clarifai_search.top_k |
| 85 | + passages = [] |
| 86 | + queries = [q for q in queries if q] |
| 87 | + |
| 88 | + for query in queries: |
| 89 | + search_response = self.clarifai_search.query(ranks=[{"text_raw": query}]) |
| 90 | + |
| 91 | + # Retrieve hits |
| 92 | + hits = [hit for data in search_response for hit in data.hits] |
| 93 | + with ThreadPoolExecutor(max_workers=10) as executor: |
| 94 | + results = list(executor.map(self.retrieve_hits, hits)) |
| 95 | + passages.extend(dotdict({"long_text": d}) for d in results) |
| 96 | + |
| 97 | + return passages |
0 commit comments