@@ -16,25 +16,15 @@ Before we delve into the example, let's ensure our environment is properly confi
1616
1717``` python
1818import dspy
19- # from dspy.datasets import DataLoader
20- from dspy.datasets.gsm8k import gsm8k_metric
19+ from dspy.datasets.gsm8k import GSM8K , gsm8k_metric
2120
2221# Set up the LM
2322turbo = dspy.OpenAI(model = ' gpt-3.5-turbo-instruct' , max_tokens = 250 )
2423dspy.settings.configure(lm = turbo)
2524
2625# Load math questions from the GSM8K dataset
27- dl = DataLoader()
28-
29- gms8k = dl.from_huggingface(' gsm8k' , " main" , input_keys = (' question' ))
30-
31- gsm8k_train = dl.sample(gms8k[' train' ], 10 )
32- gsm8k_valid = dl.sample(gms8k[' test' ], 10 )
33-
34- # Split into test and dev sets
35- split = dl.train_test_split(gsm8k_valid, train_size = 0.5 )
36- gsm8k_valid = split[' train' ]
37- gsm8k_test = split[' test' ]
26+ gms8k = GSM8K()
27+ gsm8k_trainset, gsm8k_devset = gms8k.train[:10 ], gms8k.dev[:10 ]
3828```
3929
4030## Define the Module
@@ -63,7 +53,7 @@ config = dict(max_bootstrapped_demos=4, max_labeled_demos=4)
6353
6454# Optimize! Use the `gms8k_metric` here. In general, the metric is going to tell the optimizer how well it's doing.
6555teleprompter = BootstrapFewShot(metric = gsm8k_metric, ** config)
66- optimized_cot = teleprompter.compile(CoT(), trainset = gsm8k_train , valset = gsm8k_valid )
56+ optimized_cot = teleprompter.compile(CoT(), trainset = gsm8k_trainset , valset = gsm8k_devset )
6757```
6858
6959## Evaluate
@@ -97,4 +87,4 @@ Feel free to adapt and expand upon this example to suit your specific use case w
9787
9888***
9989
100- <AuthorDetails name = " Herumb Shandilya" />
90+ <AuthorDetails name = " Herumb Shandilya" />
0 commit comments