|
| 1 | +import dspy |
| 2 | +from dspy import Example |
| 3 | +from dspy.utils.dummies import DummyLM |
| 4 | + |
| 5 | + |
| 6 | +def calculator(expression: str) -> str: |
| 7 | + try: |
| 8 | + return str(eval(expression)) |
| 9 | + except Exception: |
| 10 | + return "Error" |
| 11 | + |
| 12 | + |
| 13 | +def search(query: str) -> str: |
| 14 | + return f"Search results for: {query}" |
| 15 | + |
| 16 | + |
| 17 | +def simple_metric(example, prediction, trace=None, pred_name=None, pred_trace=None): |
| 18 | + score = 1.0 if example.answer in str(prediction.answer) else 0.0 |
| 19 | + return dspy.Prediction(score=score, feedback="Correct" if score == 1.0 else "Wrong") |
| 20 | + |
| 21 | + |
| 22 | +def test_build_program_applies_tool_descriptions(): |
| 23 | + """Test that build_program applies tool descriptions from candidate dict.""" |
| 24 | + from dspy.teleprompt.gepa.gepa_utils import DspyAdapter |
| 25 | + |
| 26 | + calc_tool = dspy.Tool(calculator, name="calculator", desc="Old description") |
| 27 | + react = dspy.ReAct("question -> answer", tools=[calc_tool]) |
| 28 | + |
| 29 | + adapter = DspyAdapter( |
| 30 | + student_module=react, |
| 31 | + metric_fn=simple_metric, |
| 32 | + feedback_map={}, |
| 33 | + failure_score=0.0, |
| 34 | + optimize_tool_descriptions=True, |
| 35 | + ) |
| 36 | + |
| 37 | + candidate = { |
| 38 | + "react": "New instruction for ReAct", |
| 39 | + "tool:calculator": "Optimized calculator description", |
| 40 | + } |
| 41 | + |
| 42 | + new_prog = adapter.build_program(candidate) |
| 43 | + |
| 44 | + assert new_prog.react.signature.instructions == "New instruction for ReAct" |
| 45 | + assert new_prog.tools["calculator"].desc == "Optimized calculator description" |
| 46 | + |
| 47 | + |
| 48 | +def test_gepa_with_tool_optimization_enabled(): |
| 49 | + """Test GEPA end-to-end with optimize_tool_descriptions=True.""" |
| 50 | + calc_tool = dspy.Tool(calculator, name="calculator", desc="Does math") |
| 51 | + react = dspy.ReAct("question -> answer", tools=[calc_tool]) |
| 52 | + |
| 53 | + lm = DummyLM( |
| 54 | + [ |
| 55 | + {"next_thought": "Calculate", "next_tool_name": "calculator", "next_tool_args": {"expression": "2+2"}}, |
| 56 | + {"next_thought": "Done", "next_tool_name": "finish", "next_tool_args": {}}, |
| 57 | + {"reasoning": "Used calculator", "answer": "4"}, |
| 58 | + ] |
| 59 | + ) |
| 60 | + reflection_lm = DummyLM([{"improved_instruction": "Better"}]) |
| 61 | + |
| 62 | + dspy.settings.configure(lm=lm) |
| 63 | + |
| 64 | + optimizer = dspy.GEPA( |
| 65 | + metric=simple_metric, |
| 66 | + reflection_lm=reflection_lm, |
| 67 | + max_metric_calls=3, |
| 68 | + optimize_tool_descriptions=True, |
| 69 | + ) |
| 70 | + |
| 71 | + trainset = [Example(question="What is 2+2?", answer="4").with_inputs("question")] |
| 72 | + |
| 73 | + optimized = optimizer.compile(react, trainset=trainset) |
| 74 | + |
| 75 | + assert optimized is not None |
| 76 | + assert hasattr(optimized, "tools") |
| 77 | + assert "calculator" in optimized.tools |
| 78 | + |
| 79 | + |
| 80 | +def test_gepa_with_multi_agent_architecture(): |
| 81 | + """Test that tool optimization discovers tools from nested subagent modules.""" |
| 82 | + class MultiAgentSystem(dspy.Module): |
| 83 | + def __init__(self): |
| 84 | + super().__init__() |
| 85 | + # Subagent as module attribute (reuse existing search function) |
| 86 | + search_tool = dspy.Tool(search, name="search", desc="Searches") |
| 87 | + self.subagent = dspy.ReAct("task -> result", tools=[search_tool]) |
| 88 | + |
| 89 | + # Main agent with subagent wrapped as tool |
| 90 | + def spawn_subagent(task: str) -> str: |
| 91 | + return self.subagent(task=task).result |
| 92 | + |
| 93 | + spawn_tool = dspy.Tool(spawn_subagent, name="spawn_subagent", desc="Spawns subagent") |
| 94 | + calc_tool = dspy.Tool(calculator, name="calculator", desc="Does math") |
| 95 | + self.main_agent = dspy.ReAct("q -> a", tools=[spawn_tool, calc_tool]) |
| 96 | + |
| 97 | + system = MultiAgentSystem() |
| 98 | + |
| 99 | + # Test extraction using named_sub_modules pattern |
| 100 | + tool_descriptions = {} |
| 101 | + for _, module in system.named_sub_modules(): |
| 102 | + if hasattr(module, 'tools'): |
| 103 | + for tool_name, tool in module.tools.items(): |
| 104 | + tool_key = f"tool:{tool_name}" |
| 105 | + if tool_key not in tool_descriptions: |
| 106 | + tool_descriptions[tool_key] = tool.desc |
| 107 | + |
| 108 | + # All tools from all nested agents should be discovered |
| 109 | + assert "tool:calculator" in tool_descriptions |
| 110 | + assert "tool:spawn_subagent" in tool_descriptions |
| 111 | + assert "tool:search" in tool_descriptions |
| 112 | + assert "tool:finish" in tool_descriptions |
| 113 | + |
| 114 | + |
| 115 | +def test_gepa_optimizes_multi_agent_system_end_to_end(): |
| 116 | + """Test GEPA.compile() optimizes ALL tools from nested multi-agent system.""" |
| 117 | + class MultiAgentSystem(dspy.Module): |
| 118 | + def __init__(self): |
| 119 | + super().__init__() |
| 120 | + search_tool = dspy.Tool(search, name="search", desc="Searches") |
| 121 | + self.subagent = dspy.ReAct("task -> result", tools=[search_tool]) |
| 122 | + |
| 123 | + def spawn_subagent(task: str) -> str: |
| 124 | + return self.subagent(task=task).result |
| 125 | + |
| 126 | + spawn_tool = dspy.Tool(spawn_subagent, name="spawn_subagent", desc="Spawns subagent") |
| 127 | + calc_tool = dspy.Tool(calculator, name="calculator", desc="Does math") |
| 128 | + self.main_agent = dspy.ReAct("q -> a", tools=[spawn_tool, calc_tool]) |
| 129 | + |
| 130 | + def forward(self, question): |
| 131 | + return self.main_agent(q=question) |
| 132 | + |
| 133 | + system = MultiAgentSystem() |
| 134 | + |
| 135 | + # Setup LMs |
| 136 | + lm = DummyLM([{"q": "question", "a": "answer"}]) |
| 137 | + reflection_lm = DummyLM([{"improved_instruction": "Better"}]) |
| 138 | + dspy.settings.configure(lm=lm) |
| 139 | + |
| 140 | + # Run GEPA optimization |
| 141 | + optimizer = dspy.GEPA( |
| 142 | + metric=simple_metric, |
| 143 | + reflection_lm=reflection_lm, |
| 144 | + max_metric_calls=3, |
| 145 | + optimize_tool_descriptions=True, |
| 146 | + ) |
| 147 | + |
| 148 | + trainset = [Example(question="test", answer="answer").with_inputs("question")] |
| 149 | + optimized = optimizer.compile(system, trainset=trainset) |
| 150 | + |
| 151 | + # Verify optimized system preserves structure with all tools |
| 152 | + assert "search" in optimized.subagent.tools |
| 153 | + assert "calculator" in optimized.main_agent.tools |
| 154 | + assert "spawn_subagent" in optimized.main_agent.tools |
0 commit comments