Skip to content

Commit 4067d9a

Browse files
fix(dspy): fix spelling mistake in azure ai search
1 parent d94294c commit 4067d9a

File tree

2 files changed

+13
-11
lines changed

2 files changed

+13
-11
lines changed

docs/docs/deep-dive/retrieval_models_clients/Azure.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -96,7 +96,7 @@ AzureAISearchRM(
9696
query_type: Optional[QueryType] = QueryType.FULL,
9797
semantic_configuration_name: str = None,
9898
is_vector_search: Optional[bool] = False,
99-
is_hybride_search: Optional[bool] = False,
99+
is_hybrid_search: Optional[bool] = False,
100100
is_fulltext_search: Optional[bool] = True,
101101
vector_filter_mode: Optional[VectorFilterMode.PRE_FILTER] = None
102102
)

dspy/retrieve/azureaisearch_rm.py

Lines changed: 12 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -132,7 +132,7 @@ class AzureAISearchRM(dspy.Retrieve):
132132
) -> List | Any:
133133
Returns embeddings for the given query.
134134
135-
check_sementic_configuration(
135+
check_semantic_configuration(
136136
self,
137137
semantic_configuration_name,
138138
query_type
@@ -166,7 +166,7 @@ def __init__(
166166
query_type: Optional[QueryType] = QueryType.FULL,
167167
semantic_configuration_name: str = None,
168168
is_vector_search: Optional[bool] = False,
169-
is_hybride_search: Optional[bool] = False,
169+
is_hybrid_search: Optional[bool] = False,
170170
is_fulltext_search: Optional[bool] = True,
171171
vector_filter_mode: Optional[VectorFilterMode.PRE_FILTER] = None,
172172
):
@@ -192,7 +192,7 @@ def __init__(
192192
self.query_type = query_type
193193
self.semantic_configuration_name = semantic_configuration_name
194194
self.is_vector_search = is_vector_search
195-
self.is_hybride_search = is_hybride_search
195+
self.is_hybrid_search = is_hybrid_search
196196
self.is_fulltext_search = is_fulltext_search
197197
self.vector_filter_mode = vector_filter_mode
198198

@@ -224,7 +224,7 @@ def azure_search_request(
224224
if is_vector_search:
225225
vector_query = self.get_embeddings(query, top, field_vector)
226226
if semantic_ranker:
227-
self.check_sementic_configuration(semantic_configuration_name, query_type)
227+
self.check_semantic_configuration(semantic_configuration_name, query_type)
228228
results = client.search(
229229
search_text=None,
230230
filter=filter,
@@ -233,6 +233,7 @@ def azure_search_request(
233233
vector_filter_mode=vector_filter_mode,
234234
semantic_configuration_name=semantic_configuration_name,
235235
top=top,
236+
query_caption=("extractive|highlight-false" if use_semantic_captions else None),
236237
)
237238
else:
238239
results = client.search(
@@ -245,7 +246,7 @@ def azure_search_request(
245246
if is_hybrid_search:
246247
vector_query = self.get_embeddings(query, top, field_vector)
247248
if semantic_ranker:
248-
self.check_sementic_configuration(semantic_configuration_name, query_type)
249+
self.check_semantic_configuration(semantic_configuration_name, query_type)
249250
results = client.search(
250251
search_text=query,
251252
filter=filter,
@@ -270,7 +271,7 @@ def azure_search_request(
270271
)
271272
if is_fulltext_search:
272273
if semantic_ranker:
273-
self.check_sementic_configuration(semantic_configuration_name, query_type)
274+
self.check_semantic_configuration(semantic_configuration_name, query_type)
274275
results = client.search(
275276
search_text=query,
276277
filter=filter,
@@ -337,7 +338,7 @@ def forward(self, query_or_queries: Union[str, List[str]], k: Optional[int]) ->
337338
self.query_type,
338339
self.semantic_configuration_name,
339340
self.is_vector_search,
340-
self.is_hybride_search,
341+
self.is_hybrid_search,
341342
self.is_fulltext_search,
342343
self.field_vector,
343344
self.vector_filter_mode,
@@ -366,9 +367,10 @@ def get_embeddings(self, query: str, k_nearest_neighbors: int, field_vector: str
366367
assert (
367368
self.azure_openai_client or self.embedding_func
368369
), "Either azure_openai_client or embedding_func must be provided."
369-
assert field_vector, "field_vector must be provided."
370-
370+
371371
if self.azure_openai_client is not None:
372+
assert field_vector, "field_vector must be provided."
373+
372374
embedding = (
373375
self.azure_openai_client.embeddings.create(input=query, model=self.openai_embed_model).data[0].embedding
374376
)
@@ -379,7 +381,7 @@ def get_embeddings(self, query: str, k_nearest_neighbors: int, field_vector: str
379381
else:
380382
return self.embedding_func(query)
381383

382-
def check_sementic_configuration(self, semantic_configuration_name, query_type):
384+
def check_semantic_configuration(self, semantic_configuration_name, query_type):
383385
"""
384386
Checks semantic configuration.
385387

0 commit comments

Comments
 (0)