|
| 1 | +import re |
| 2 | +from typing import Union |
| 3 | + |
| 4 | +from dsp.modules import LM |
| 5 | + |
| 6 | + |
| 7 | +# This testing module was moved in PR #735 to patch Arize Phoenix logging |
| 8 | +class DummyLM(LM): |
| 9 | + """Dummy language model for unit testing purposes.""" |
| 10 | + |
| 11 | + def __init__(self, answers: Union[list[str], dict[str, str]], follow_examples: bool = False): |
| 12 | + """Initializes the dummy language model. |
| 13 | +
|
| 14 | + Parameters: |
| 15 | + - answers: A list of strings or a dictionary with string keys and values. |
| 16 | + - follow_examples: If True, and the prompt contains an example exactly equal to the prompt, |
| 17 | + the dummy model will return the next string in the list for each request. |
| 18 | + If a list is provided, the dummy model will return the next string in the list for each request. |
| 19 | + If a dictionary is provided, the dummy model will return the value corresponding to the key that matches the prompt. |
| 20 | + """ |
| 21 | + super().__init__("dummy-model") |
| 22 | + self.provider = "dummy" |
| 23 | + self.answers = answers |
| 24 | + self.follow_examples = follow_examples |
| 25 | + |
| 26 | + def basic_request(self, prompt, n=1, **kwargs) -> dict[str, list[dict[str, str]]]: |
| 27 | + """Generates a dummy response based on the prompt.""" |
| 28 | + dummy_response = {"choices": []} |
| 29 | + for _ in range(n): |
| 30 | + answer = None |
| 31 | + |
| 32 | + if self.follow_examples: |
| 33 | + prefix = prompt.split("\n")[-1] |
| 34 | + _instructions, _format, *examples, _output = prompt.split("\n---\n") |
| 35 | + examples_str = "\n".join(examples) |
| 36 | + possible_answers = re.findall(prefix + r"\s*(.*)", examples_str) |
| 37 | + if possible_answers: |
| 38 | + # We take the last answer, as the first one is just from |
| 39 | + # the "Follow the following format" section. |
| 40 | + answer = possible_answers[-1] |
| 41 | + print(f"DummyLM got found previous example for {prefix} with value {answer=}") |
| 42 | + else: |
| 43 | + print(f"DummyLM couldn't find previous example for {prefix=}") |
| 44 | + |
| 45 | + if answer is None: |
| 46 | + if isinstance(self.answers, dict): |
| 47 | + answer = next((v for k, v in self.answers.items() if k in prompt), None) |
| 48 | + else: |
| 49 | + if len(self.answers) > 0: |
| 50 | + answer = self.answers[0] |
| 51 | + self.answers = self.answers[1:] |
| 52 | + |
| 53 | + if answer is None: |
| 54 | + answer = "No more responses" |
| 55 | + |
| 56 | + # Mimic the structure of a real language model response. |
| 57 | + dummy_response["choices"].append( |
| 58 | + { |
| 59 | + "text": answer, |
| 60 | + "finish_reason": "simulated completion", |
| 61 | + }, |
| 62 | + ) |
| 63 | + |
| 64 | + RED, GREEN, RESET = "\033[91m", "\033[92m", "\033[0m" |
| 65 | + print("=== DummyLM ===") |
| 66 | + print(prompt, end="") |
| 67 | + print(f"{RED}{answer}{RESET}") |
| 68 | + print("===") |
| 69 | + |
| 70 | + # Simulate processing and storing the request and response. |
| 71 | + history_entry = { |
| 72 | + "prompt": prompt, |
| 73 | + "response": dummy_response, |
| 74 | + "kwargs": kwargs, |
| 75 | + "raw_kwargs": kwargs, |
| 76 | + } |
| 77 | + self.history.append(history_entry) |
| 78 | + |
| 79 | + return dummy_response |
| 80 | + |
| 81 | + def __call__(self, prompt, _only_completed=True, _return_sorted=False, **kwargs): |
| 82 | + """Retrieves dummy completions.""" |
| 83 | + response = self.basic_request(prompt, **kwargs) |
| 84 | + choices = response["choices"] |
| 85 | + |
| 86 | + # Filter choices and return text completions. |
| 87 | + return [choice["text"] for choice in choices] |
| 88 | + |
| 89 | + def get_convo(self, index) -> str: |
| 90 | + """Get the prompt + anwer from the ith message.""" |
| 91 | + return self.history[index]["prompt"] + " " + self.history[index]["response"]["choices"][0]["text"] |
0 commit comments