Skip to content

Commit b470350

Browse files
Update GNSS Flex documentation and hardware overviews
Clarified the GNSS Flex system description Improved IMU tilt compensation for the LG290P-Tilt module mosaic-X5 Tilt module: - Added entries for the product comparison - Added board dimensions - Revised antenna recommendations and warnings
1 parent bfdf94a commit b470350

File tree

3 files changed

+27
-25
lines changed

3 files changed

+27
-25
lines changed

docs/system_overview.md

Lines changed: 2 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33

44

55
## GNSS Flex System
6-
The GNSS Flex system is designed to be modular with a standardized pin layout that keeps the ecosystem pin-compatible for upgrades and allows boards to be easily swapped for repairs. The ecosystem is comprised of two boards, which mate through two 2x10-pin, 2mm pitch headers.
6+
The GNSS Flex system is designed to be modular with a standardized pin layout that keeps the ecosystem pin-compatible for upgrades and allows boards to be easily swapped for repairs. The ecosystem is comprised of two boards, which mate through two 2x10-pin, 2mm pitch headers. The **SparkPNT GNSS Flex modules** function as *plug-in* boards that feature different GNSS receivers. They are designed to mate with **GNSS Flex** *carrier* **boards** for various purposes; such as a breakout board, Raspberry Pi pHAT, SparkPNT product line, etc.
77

88

99
<div class="grid" markdown>
@@ -21,7 +21,7 @@ The GNSS Flex system is designed to be modular with a standardized pin layout th
2121

2222
<div markdown>
2323

24-
???+ tip "Manipulate 3D Model"
24+
!!! tip "Manipulate 3D Model"
2525
<article style="text-align: center;" markdown>
2626

2727
| Controls | Mouse | Touchscreen |
@@ -37,9 +37,6 @@ The GNSS Flex system is designed to be modular with a standardized pin layout th
3737
</div>
3838

3939

40-
The SparkPNT GNSS Flex modules function as *plug-in* boards that feature different GNSS receivers. They are designed to mate with *carrier* boards for various purposes; such as a breakout board, Raspberry Pi pHAT, SparkPNT product line, etc.
41-
42-
4340

4441
### Board Variants
4542
Below, are two generic examples of a GNSS Flex *module* and *carrier* board.

flex_boards/SparkPNT_GNSS_Flex_Module_LG290P-Tilt/docs/hardware_overview.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424

2525

2626
??? info "Tilt Compensation"
27-
The IM19 IMU from Feyman (FMI) fuses MEMS sensor and GNSS RTK positioning data to deliver high-precision attitude measurement, with roll and pitch accurate to within 0.05 degrees. This kind of superb accuracy has widespread uses in industrial applications such as tilt RTK surveys (where RTK poles need not be held straight vertical as the IM19 can calculate a virtual digital level at any tilt angle), agriculture machine automation, and dead reckoning.
27+
The IM19 attitude module from Feyman (FMI) fuses MEMS IMU sensor data and GNSS RTK positioning to deliver high-precision attitude compensated measurements, with roll and pitch accurate to within 0.05 degrees. This kind of superb accuracy has widespread uses in industrial applications such as tilt RTK surveys (where RTK poles need not be held straight vertical as the IM19 can calculate a virtual digital level at any tilt angle), agriculture machine automation, and dead reckoning.
2828

2929
When configured, fed with the LG290P Pulse-Per-Second signal and NMEA GGA, RMC, and GST messages; once calibrated, the IM19 will output proprietary NMEA messages containing the compensated position and roll, pitch and yaw. By default, the LG290P `COM3` `TX` is linked to the IM19 `UART2` `RX` to carry the required NMEA messages. However, this can be changed via jumper links on the Flex Module, if necessary.
3030

flex_boards/SparkPNT_GNSS_Flex_Module_mosaic-X5/docs/hardware_overview.md

Lines changed: 24 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -136,7 +136,7 @@
136136
Yes<br>
137137
<i>10/100 Base-T</i>
138138
</td>
139-
<td style="text-align:center; vertical-align:middle;">2x10 Header*</td>
139+
<td style="text-align:center; vertical-align:middle;">GNSS Flex Headers*</td>
140140
<td style="text-align:center; vertical-align:middle;">No</td>
141141
</tr>
142142
<tr>
@@ -154,6 +154,15 @@
154154
<i>10 Base-T</i>
155155
</td>
156156
</tr>
157+
<tr>
158+
<td>Tilt Compensasion</td>
159+
<td style="text-align:center">No</td>
160+
<td style="text-align:center">No</td>
161+
<td style="text-align:center">No</td>
162+
<td style="text-align:center">No</td>
163+
<td style="text-align:center">Yes*</td>
164+
<td style="text-align:center">No</td>
165+
</tr>
157166
<tr>
158167
<td style="vertical-align:middle;">COM Ports</td>
159168
<td style="text-align:center">4</td>
@@ -175,7 +184,7 @@
175184
<td style="text-align:center">Yes</td>
176185
<td style="text-align:center">Yes</td>
177186
<td style="text-align:center">Yes</td>
178-
<td style="text-align:center">2x10 Header*</td>
187+
<td style="text-align:center">GNSS Flex Headers*</td>
179188
<td style="text-align:center">Yes</td>
180189
</tr>
181190
<tr>
@@ -208,7 +217,7 @@
208217
<td style="text-align:center">6-Pin JST Connector</td>
209218
<td style="text-align:center">SMA Connector</td>
210219
<td style="text-align:center">Screw Terminal</td>
211-
<td style="text-align:center">2x10 Header*</td>
220+
<td style="text-align:center">GNSS Flex Headers*</td>
212221
<td style="text-align:center">No</td>
213222
</tr>
214223
<tr>
@@ -229,7 +238,7 @@
229238
180.6 x 101.8 x 41mm<br>
230239
<i>Enclosure Only</i>
231240
</td>
232-
<td style="text-align:center; vertical-align:middle;"></td>
241+
<td style="text-align:center; vertical-align:middle;">44.5mm x 31.8mm x 10.4mm</td>
233242
<td style="text-align:center; vertical-align:middle;"></td>
234243
</tr>
235244
<tr>
@@ -241,7 +250,7 @@
241250
415.15g<br>
242251
<i>Enclosure Only</i>
243252
</td>
244-
<td style="text-align:center; vertical-align:middle;"></td>
253+
<td style="text-align:center; vertical-align:middle;">GNSS Only: 14.0g<br>IMU: 15.2g</td>
245254
<td style="text-align:center; vertical-align:middle;"></td>
246255
</tr>
247256

@@ -257,6 +266,9 @@
257266
!!! note "mosaic-5 GNSS Flex Modules"
258267
SparkPNT GNSS Flex modules are modular, *plug-in* boards that utilize a *carrier* board to access the pins of the GNSS Flex headers.
259268

269+
- The [GNSS only variant](https://www.sparkfun.com/sparkpnt-gnss-flex-module-mosaic-x5.html) of the SparkPNT GNSS Flex module includes a middle header that breaks out the Ethernet PHY interface of the mosaic-X5.
270+
- The [IMU variant](https://www.sparkfun.com/sparkpnt-gnss-flex-module-mosaic-x5-im19-imu.html) of the SparkPNT GNSS Flex module includes the IM19 IMU for RK tilt-compensation applications with the mosaic-X5.
271+
260272

261273

262274
## Design Files
@@ -275,6 +287,7 @@
275287
- :material-folder-zip: [KiCad Files](./assets/board_files/kicad_files.zip)
276288
- :material-rotate-3d: [STEP File](./assets/3d_model/cad_model.step)
277289
- :fontawesome-solid-file-pdf: [Board Dimensions](./assets/board_files/dimensions.pdf):
290+
- 1.75" x 1.25" (44.45mm x 31.75mm)
278291

279292

280293
- <!-- Boxes in tabs -->
@@ -819,18 +832,13 @@ In addition to the GNSS Flex headers, an extra 2x10 pin, 2mm pitch female header
819832
## U.FL Connector
820833
Users will need to connect a compatible GNSS antenna to the `ANT1` U.FL connector. The type of antenna used with the mosaic-X5 GNSS receiver affects the overall accuracy of the positions calculated by the GNSS receiver.
821834

822-
- An active antenna often features a [LNA](https://en.wikipedia.org/wiki/Low-noise_amplifier "low-noise amplifier"). This allows the module to boost the signal received by the GNSS module without degrading the [SNR](https://en.wikipedia.org/wiki/Signal-to-noise_ratio Signal-to-noise ratio).
823-
- The more bands an antenna supports, the greater the performance.
824-
- Faster acquisition time.
825-
- Access and support for the `L5` GPS band can potentially mitigate multi-path errors.
826-
- Supporting more frequency bands, allows a GNSS receiver to be less susceptible to jamming and spoofing.
827835

828-
829-
!!! tip
830-
For the best performance, we recommend users choose a compatible L1/L2/L5/L6 GNSS antenna and utilize a low-loss cable. Also, don't forget that GNSS signals are fairly weak and can't penetrate buildings or dense vegetation. The GNSS antenna should have an unobstructed view of the sky.
836+
- Passive antennas are not recommended for the mosaic-X5 GNSS receiver.
837+
- There is no need to inject an external DC voltage for the GNSS antenna. Power is already provided from the mosaic-X5 GNSS receiver for the LNA of an active antenna.
831838

832839

833-
There are some key parameters related to an antenna that can make or break the signal reception from the satellites. These include the operation frequency, gain, polarization, efficiency and overall loss.
840+
!!! danger
841+
Never inject an external DC voltage into the SMA connector for the GNSS antenna, as it may damage the mosaic-X5 GNSS receiver. For instance, when using a splitter to distribute the antenna signal to several GNSS receivers, make sure that no more than one output of the splitter passes DC. Use [DC-blocks](https://en.wikipedia.org/wiki/DC_block) otherwise.
834842

835843

836844
<figure markdown>
@@ -839,11 +847,8 @@ There are some key parameters related to an antenna that can make or break the s
839847
</figure>
840848

841849

842-
!!! info
843-
The `VANT` pin provides **3.3V** of external power for an active antenna.
844-
845-
!!! danger
846-
Never inject an external DC voltage into the SMA connector for the GNSS antenna, as it may damage the mosaic-X5 module. For instance, when using a splitter to distribute the antenna signal to several GNSS receivers, make sure that no more than one output of the splitter passes DC. Use [DC-blocks](https://en.wikipedia.org/wiki/DC_block) otherwise.
850+
!!! tip
851+
For the best performance, we recommend users choose a compatible L1/L2/L5/L6 GNSS antenna and utilize a low-loss cable. Also, don't forget that GNSS signals are fairly weak and can't penetrate buildings or dense vegetation. The GNSS antenna should have an unobstructed view of the sky.
847852

848853

849854

0 commit comments

Comments
 (0)