|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +from setuptools import setup |
| 3 | + |
| 4 | +packages = \ |
| 5 | +['dataprep', |
| 6 | + 'dataprep.assets', |
| 7 | + 'dataprep.connector', |
| 8 | + 'dataprep.eda', |
| 9 | + 'dataprep.eda.basic', |
| 10 | + 'dataprep.eda.correlation', |
| 11 | + 'dataprep.eda.create_report', |
| 12 | + 'dataprep.eda.distribution', |
| 13 | + 'dataprep.eda.distribution.compute', |
| 14 | + 'dataprep.eda.missing', |
| 15 | + 'dataprep.eda.outlier', |
| 16 | + 'dataprep.tests', |
| 17 | + 'dataprep.tests.connector', |
| 18 | + 'dataprep.tests.eda'] |
| 19 | + |
| 20 | +package_data = \ |
| 21 | +{'': ['*'], |
| 22 | + 'dataprep.eda.create_report': ['templates/*'], |
| 23 | + 'dataprep.eda.distribution': ['templates/*']} |
| 24 | + |
| 25 | +install_requires = \ |
| 26 | +['aiohttp>=3.6.2,<4.0.0', |
| 27 | + 'bokeh>=2.0,<2.1', |
| 28 | + 'dask[complete]>=2.22,<2.23', |
| 29 | + 'jinja2>=2.11,<2.12', |
| 30 | + 'jsonpath-ng>=1.5.1,<2.0.0', |
| 31 | + 'jsonschema>=3.2,<3.3', |
| 32 | + 'lxml>=4.5,<4.6', |
| 33 | + 'nltk>=3.5,<4.0', |
| 34 | + 'numpy>=1.18,<1.19', |
| 35 | + 'pandas>=1.0,<1.1', |
| 36 | + 'pillow>=7.1.2,<8.0.0', |
| 37 | + 'requests>=2.23,<2.24', |
| 38 | + 'scipy>=1.4,<1.5', |
| 39 | + 'tornado==5.0.2', |
| 40 | + 'tqdm>=4.47.0,<5.0.0', |
| 41 | + 'wordcloud>=1.7.0,<2.0.0'] |
| 42 | + |
| 43 | +setup_kwargs = { |
| 44 | + 'name': 'dataprep', |
| 45 | + 'version': '0.2.12', |
| 46 | + 'description': 'Dataprep: Data Preparation in Python', |
| 47 | + 'long_description': '<div align="center"><img width="100%" src="https://github.com/sfu-db/dataprep/raw/develop/assets/logo.png"/></div>\n\n-----------------\n<p align="center">\n <a href="LICENSE"><img src="https://img.shields.io/pypi/l/dataprep?style=flat-square"/></a>\n <a href="https://sfu-db.github.io/dataprep/"><img src="https://img.shields.io/badge/dynamic/json?color=blue&label=docs&prefix=v&query=%24.info.version&url=https%3A%2F%2Fpypi.org%2Fpypi%2Fdataprep%2Fjson&style=flat-square"/></a>\n <a href="https://pypi.org/project/dataprep/"><img src="https://img.shields.io/pypi/pyversions/dataprep?style=flat-square"/></a>\n <a href="https://www.codacy.com/gh/sfu-db/dataprep?utm_source=github.com&utm_medium=referral&utm_content=sfu-db/dataprep&utm_campaign=Badge_Coverage"><img src="https://app.codacy.com/project/badge/Coverage/ed658f08dcce4f088c850253475540ba"/></a>\n<!-- <a href="https://codecov.io/gh/sfu-db/dataprep"><img src="https://img.shields.io/codecov/c/github/sfu-db/dataprep?style=flat-square"/></a> -->\n <a href="https://www.codacy.com/gh/sfu-db/dataprep?utm_source=github.com&utm_medium=referral&utm_content=sfu-db/dataprep&utm_campaign=Badge_Grade"><img src="https://app.codacy.com/project/badge/Grade/ed658f08dcce4f088c850253475540ba"/></a>\n <a href="https://discord.gg/xwbkFNk"><img src="https://img.shields.io/discord/702765817154109472?style=flat-square"/></a>\n</p>\n\n\n<p align="center">\n <a href="https://sfu-db.github.io/dataprep/">Documentation</a>\n |\n <a href="https://discord.gg/xwbkFNk">Forum</a>\n | \n <a href="https://groups.google.com/forum/#!forum/dataprep">Mail List</a>\n</p>\n\nDataprep lets you prepare your data using a single library with a few lines of code.\n\nCurrently, you can use `dataprep` to:\n* Collect data from common data sources (through `dataprep.connector`)\n* Do your exploratory data analysis (through `dataprep.eda`)\n* ...more modules are coming\n\n## Releases\n\n<div align="center">\n <table>\n <tr>\n <th>Repo</th>\n <th>Version</th>\n <th>Downloads</th>\n </tr>\n <tr>\n <td>PyPI</td>\n <td><a href="https://pypi.org/project/dataprep/"><img src="https://img.shields.io/pypi/v/dataprep?style=flat-square"/></a></td>\n <td><a href="https://pepy.tech/project/dataprep"><img src="https://pepy.tech/badge/dataprep"/></a></td>\n </tr>\n <tr> \n <td>conda-forge</td>\n <td><a href="https://anaconda.org/conda-forge/dataprep"><img src="https://img.shields.io/conda/vn/conda-forge/dataprep.svg"/></a></td>\n <td><a href="https://anaconda.org/conda-forge/dataprep"><img src="https://img.shields.io/conda/dn/conda-forge/dataprep.svg"/></a></td>\n </tr>\n </table>\n</div>\n\n\n## Installation\n\n```bash\npip install -U dataprep\n```\n\n## Examples & Usages\n\nThe following examples can give you an impression of what dataprep can do:\n\n* [Documentation: Connector](https://sfu-db.github.io/dataprep/user_guide/connector/connector.html)\n* [Documentation: EDA](https://sfu-db.github.io/dataprep/user_guide/eda/introduction.html)\n* [EDA Case Study: Titanic](https://sfu-db.github.io/dataprep/user_guide/eda/titanic.html)\n* [EDA Case Study: House Price](https://sfu-db.github.io/dataprep/user_guide/eda/house_price.html)\n\n### EDA\n\nThere are common tasks during the exploratory data analysis stage, \nlike a quick look at the columnar distribution, or understanding the correlations\nbetween columns. \n\nThe EDA module categorizes these EDA tasks into functions helping you finish EDA\ntasks with a single function call.\n\n* Want to understand the distributions for each DataFrame column? Use `plot`.\n\n<a href="https://sfu-db.github.io/dataprep/user_guide/eda/plot.html#Get-an-overview-of-the-dataset-with-plot(df)"><img src="https://github.com/sfu-db/dataprep/raw/develop/assets/plot(df).gif"/></a>\n\n* Want to understand the correlation between columns? Use `plot_correlation`.\n\n<a href="https://sfu-db.github.io/dataprep/user_guide/eda/plot_correlation.html#Get-an-overview-of-the-correlations-with-plot_correlation(df)"><img src="https://github.com/sfu-db/dataprep/raw/develop/assets/plot_correlation(df).gif"/></a>\n\n* Or, if you want to understand the impact of the missing values for each column, use `plot_missing`.\n\n<a href="https://sfu-db.github.io/dataprep/user_guide/eda/plot_missing.html#Get-an-overview-of-the-missing-values-with-plot_missing(df)"><img src="https://github.com/sfu-db/dataprep/raw/develop/assets/plot_missing(df).gif"/></a>\n\nYou can drill down to get more information by given `plot`, `plot_correlation` and `plot_missing` a column name.: E.g. for `plot_missing`\n\n<a href="https://sfu-db.github.io/dataprep/user_guide/eda/plot_missing.html#Understand-the-impact-of-the-missing-values-in-column-x-with-plot_missing(df,-x)"><img src="https://github.com/sfu-db/dataprep/raw/develop/assets/plot_missing(df, x).gif"/></a>\n\n for numerical column using`plot`:\n\n<a href="https://sfu-db.github.io/dataprep/user_guide/eda/plot.html#Understand-a-column-with-plot(df,-x)"><img src="https://github.com/sfu-db/dataprep/raw/develop/assets/plot(df,x)_num.gif"/></a>\n\n for categorical column using`plot`:\n\n<a href="https://sfu-db.github.io/dataprep/user_guide/eda/plot.html#Understand-a-column-with-plot(df,-x)"><img src="https://github.com/sfu-db/dataprep/raw/develop/assets/plot(df,x)_cat.gif"/></a>\n\nDon\'t forget to checkout the [examples] folder for detailed demonstration!\n\n### Connector\n\nConnector provides a simple way to collect data from different websites, offering several benefits:\n* A unified API: you can fetch data using one or two lines of code to get data from many websites.\n* Auto Pagination: it automatically does the pagination for you so that you can specify the desired count of the returned results without even considering the count-per-request restriction from the API.\n* Smart API request strategy: it can issue API requests in parallel while respecting the rate limit policy.\n\nIn the following examples, you can download the Yelp business search result into a pandas DataFrame, \nusing only two lines of code, without taking deep looking into the Yelp documentation!\nMore examples can be found here:\n[Examples](https://github.com/sfu-db/dataprep/tree/develop/examples)\n\n<center><a href="https://sfu-db.github.io/dataprep/connector.html#getting-web-data-with-connector-query"><img src="https://github.com/sfu-db/dataprep/raw/develop/assets/connector.png"/></a></center>\n\n\n## Contribute\n\nThere are many ways to contribute to Dataprep.\n\n* Submit bugs and help us verify fixes as they are checked in.\n* Review the source code changes.\n* Engage with other Dataprep users and developers on StackOverflow.\n* Help each other in the [Dataprep Community Discord](https://discord.gg/xwbkFNk) and [Mail list & Forum].\n* [![Twitter]](https://twitter.com/sfu_db)\n* Contribute bug fixes.\n* Providing use cases and writing down your user experience.\n\nPlease take a look at our [wiki] for development documentations!\n\n\n[Build Status]: https://img.shields.io/circleci/build/github/sfu-db/dataprep/master?style=flat-square&token=f68e38757f5c98771f46d1c7e700f285a0b9784d\n[Mail list & Forum]: https://groups.google.com/forum/#!forum/dataprep\n[wiki]: https://github.com/sfu-db/dataprep/wiki\n[examples]: https://github.com/sfu-db/dataprep/tree/master/examples\n[Twitter]: https://img.shields.io/twitter/follow/sfu_db?style=social\n', |
| 48 | + 'author': 'SFU Database System Lab', |
| 49 | + 'author_email': 'dsl.cs.sfu@gmail.com', |
| 50 | + 'maintainer': 'Weiyuan Wu', |
| 51 | + 'maintainer_email': 'youngw@sfu.com', |
| 52 | + 'url': 'https://github.com/sfu-db/dataprep', |
| 53 | + 'packages': packages, |
| 54 | + 'package_data': package_data, |
| 55 | + 'install_requires': install_requires, |
| 56 | + 'python_requires': '>=3.6.1,<4.0.0', |
| 57 | +} |
| 58 | + |
| 59 | + |
| 60 | +setup(**setup_kwargs) |
| 61 | + |
| 62 | +# This setup.py was autogenerated using poetry. |
0 commit comments