@@ -456,7 +456,7 @@ We can inspect the various statistics derived from the fit::
456456
457457 >>> print(model.summary()) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE +REPORT_UDIFF
458458 OLS Regression Results
459- ==============================================================================
459+ ==========================...
460460 Dep. Variable: y R-squared: 0.804
461461 Model: OLS Adj. R-squared: 0.794
462462 Method: Least Squares F-statistic: 74.03
@@ -465,17 +465,17 @@ We can inspect the various statistics derived from the fit::
465465 No. Observations: 20 AIC: 120.0
466466 Df Residuals: 18 BIC: 122.0
467467 Df Model: 1
468- ==============================================================================
468+ ==========================...
469469 coef std err t P>|t| [95.0% Conf. Int.]
470- ------------------------------------------------------------------------------
470+ ------------------------------------------...
471471 Intercept -5.5335 1.036 -5.342 0.000 -7.710 -3.357
472472 x 2.9369 0.341 8.604 0.000 2.220 3.654
473- ==============================================================================
473+ ==========================...
474474 Omnibus: 0.100 Durbin-Watson: 2.956
475475 Prob(Omnibus): 0.951 Jarque-Bera (JB): 0.322
476476 Skew: -0.058 Prob(JB): 0.851
477477 Kurtosis: 2.390 Cond. No. 3.03
478- ========================================================================= ...
478+ ==========================...
479479
480480
481481.. topic :: Terminology:
@@ -511,7 +511,7 @@ model::
511511 >>> model = ols("VIQ ~ Gender + 1", data).fit()
512512 >>> print(model.summary()) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE +REPORT_UDIFF
513513 OLS Regression Results
514- ==============================================================================
514+ ==========================...
515515 Dep. Variable: VIQ R-squared: 0.015
516516 Model: OLS Adj. R-squared: -0.010
517517 Method: Least Squares F-statistic: 0.5969
@@ -520,17 +520,17 @@ model::
520520 No. Observations: 40 AIC: 368.8
521521 Df Residuals: 38 BIC: 372.2
522522 Df Model: 1
523- ======================================================================= ...
523+ ==========================...
524524 coef std err t P>|t| [95.0% Conf. Int.]
525525 -----------------------------------------------------------------------...
526526 Intercept 109.4500 5.308 20.619 0.000 98.704 120.196
527527 Gender[T.Male] 5.8000 7.507 0.773 0.445 -9.397 20.997
528- ======================================================================= ...
528+ ==========================...
529529 Omnibus: 26.188 Durbin-Watson: 1.709
530530 Prob(Omnibus): 0.000 Jarque-Bera (JB): 3.703
531531 Skew: 0.010 Prob(JB): 0.157
532532 Kurtosis: 1.510 Cond. No. 2.62
533- ======================================================================= ...
533+ ==========================...
534534
535535.. topic :: **Tips on specifying model**
536536
@@ -581,9 +581,9 @@ model::
581581 >>> print(model.summary()) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE +REPORT_UDIFF
582582 OLS Regression Results
583583 ...
584- ======================================================================= ...
584+ ==========================...
585585 coef std err t P>|t| [95.0% Conf. Int.]
586- ----------------------------------------------------------------------- ...
586+ ------------------------------------------...
587587 Intercept 113.4500 3.683 30.807 0.000 106.119 120.781
588588 type[T.piq] -2.4250 5.208 -0.466 0.643 -12.793 7.943
589589 ...
@@ -635,7 +635,7 @@ Such a model can be seen in 3D as fitting a plane to a cloud of (`x`,
635635 >>> model = ols('sepal_width ~ name + petal_length', data).fit()
636636 >>> print(model.summary()) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE +REPORT_UDIFF
637637 OLS Regression Results
638- ==============================================================================
638+ ==========================...
639639 Dep. Variable: sepal_width R-squared: 0.478
640640 Model: OLS Adj. R-squared: 0.468
641641 Method: Least Squares F-statistic: 44.63
@@ -644,19 +644,19 @@ Such a model can be seen in 3D as fitting a plane to a cloud of (`x`,
644644 No. Observations: 150 AIC: 84.37
645645 Df Residuals: 146 BIC: 96.41
646646 Df Model: 3
647- =========================================================================== ...
647+ ==========================...
648648 coef std err t P>|t| [95.0% Conf. Int.]
649- --------------------------------------------------------------------------- ...
649+ ------------------------------------------...
650650 Intercept 2.9813 0.099 29.989 0.000 2.785 3.178
651651 name[T.versicolor] -1.4821 0.181 -8.190 0.000 -1.840 -1.124
652652 name[T.virginica] -1.6635 0.256 -6.502 0.000 -2.169 -1.158
653653 petal_length 0.2983 0.061 4.920 0.000 0.178 0.418
654- ==============================================================================
654+ ==========================...
655655 Omnibus: 2.868 Durbin-Watson: 1.753
656656 Prob(Omnibus): 0.238 Jarque-Bera (JB): 2.885
657657 Skew: -0.082 Prob(JB): 0.236
658658 Kurtosis: 3.659 Cond. No. 54.0
659- ==============================================================================
659+ ==========================...
660660
661661|
662662
@@ -818,7 +818,7 @@ Do wages increase more with education for males than females?
818818 gender[T.male] 0.2750 0.093 2.972 0.003 0.093 0.457
819819 education 0.0415 0.005 7.647 0.000 0.031 0.052
820820 education:gender[T.male] -0.0134 0.007 -1.919 0.056 -0.027 0.000
821- ==============================================================================
821+ ==========================...
822822 ...
823823
824824Can we conclude that education benefits males more than females?
0 commit comments