Skip to content

Commit d59c920

Browse files
committed
Shorter lines for small devices
1 parent 0f471e1 commit d59c920

File tree

1 file changed

+17
-17
lines changed

1 file changed

+17
-17
lines changed

packages/statistics/index.rst

Lines changed: 17 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -456,7 +456,7 @@ We can inspect the various statistics derived from the fit::
456456

457457
>>> print(model.summary()) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE +REPORT_UDIFF
458458
OLS Regression Results
459-
==============================================================================
459+
==========================...
460460
Dep. Variable: y R-squared: 0.804
461461
Model: OLS Adj. R-squared: 0.794
462462
Method: Least Squares F-statistic: 74.03
@@ -465,17 +465,17 @@ We can inspect the various statistics derived from the fit::
465465
No. Observations: 20 AIC: 120.0
466466
Df Residuals: 18 BIC: 122.0
467467
Df Model: 1
468-
==============================================================================
468+
==========================...
469469
coef std err t P>|t| [95.0% Conf. Int.]
470-
------------------------------------------------------------------------------
470+
------------------------------------------...
471471
Intercept -5.5335 1.036 -5.342 0.000 -7.710 -3.357
472472
x 2.9369 0.341 8.604 0.000 2.220 3.654
473-
==============================================================================
473+
==========================...
474474
Omnibus: 0.100 Durbin-Watson: 2.956
475475
Prob(Omnibus): 0.951 Jarque-Bera (JB): 0.322
476476
Skew: -0.058 Prob(JB): 0.851
477477
Kurtosis: 2.390 Cond. No. 3.03
478-
=========================================================================...
478+
==========================...
479479

480480

481481
.. topic:: Terminology:
@@ -511,7 +511,7 @@ model::
511511
>>> model = ols("VIQ ~ Gender + 1", data).fit()
512512
>>> print(model.summary()) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE +REPORT_UDIFF
513513
OLS Regression Results
514-
==============================================================================
514+
==========================...
515515
Dep. Variable: VIQ R-squared: 0.015
516516
Model: OLS Adj. R-squared: -0.010
517517
Method: Least Squares F-statistic: 0.5969
@@ -520,17 +520,17 @@ model::
520520
No. Observations: 40 AIC: 368.8
521521
Df Residuals: 38 BIC: 372.2
522522
Df Model: 1
523-
=======================================================================...
523+
==========================...
524524
coef std err t P>|t| [95.0% Conf. Int.]
525525
-----------------------------------------------------------------------...
526526
Intercept 109.4500 5.308 20.619 0.000 98.704 120.196
527527
Gender[T.Male] 5.8000 7.507 0.773 0.445 -9.397 20.997
528-
=======================================================================...
528+
==========================...
529529
Omnibus: 26.188 Durbin-Watson: 1.709
530530
Prob(Omnibus): 0.000 Jarque-Bera (JB): 3.703
531531
Skew: 0.010 Prob(JB): 0.157
532532
Kurtosis: 1.510 Cond. No. 2.62
533-
=======================================================================...
533+
==========================...
534534

535535
.. topic:: **Tips on specifying model**
536536

@@ -581,9 +581,9 @@ model::
581581
>>> print(model.summary()) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE +REPORT_UDIFF
582582
OLS Regression Results
583583
...
584-
=======================================================================...
584+
==========================...
585585
coef std err t P>|t| [95.0% Conf. Int.]
586-
-----------------------------------------------------------------------...
586+
------------------------------------------...
587587
Intercept 113.4500 3.683 30.807 0.000 106.119 120.781
588588
type[T.piq] -2.4250 5.208 -0.466 0.643 -12.793 7.943
589589
...
@@ -635,7 +635,7 @@ Such a model can be seen in 3D as fitting a plane to a cloud of (`x`,
635635
>>> model = ols('sepal_width ~ name + petal_length', data).fit()
636636
>>> print(model.summary()) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE +REPORT_UDIFF
637637
OLS Regression Results
638-
==============================================================================
638+
==========================...
639639
Dep. Variable: sepal_width R-squared: 0.478
640640
Model: OLS Adj. R-squared: 0.468
641641
Method: Least Squares F-statistic: 44.63
@@ -644,19 +644,19 @@ Such a model can be seen in 3D as fitting a plane to a cloud of (`x`,
644644
No. Observations: 150 AIC: 84.37
645645
Df Residuals: 146 BIC: 96.41
646646
Df Model: 3
647-
===========================================================================...
647+
==========================...
648648
coef std err t P>|t| [95.0% Conf. Int.]
649-
---------------------------------------------------------------------------...
649+
------------------------------------------...
650650
Intercept 2.9813 0.099 29.989 0.000 2.785 3.178
651651
name[T.versicolor] -1.4821 0.181 -8.190 0.000 -1.840 -1.124
652652
name[T.virginica] -1.6635 0.256 -6.502 0.000 -2.169 -1.158
653653
petal_length 0.2983 0.061 4.920 0.000 0.178 0.418
654-
==============================================================================
654+
==========================...
655655
Omnibus: 2.868 Durbin-Watson: 1.753
656656
Prob(Omnibus): 0.238 Jarque-Bera (JB): 2.885
657657
Skew: -0.082 Prob(JB): 0.236
658658
Kurtosis: 3.659 Cond. No. 54.0
659-
==============================================================================
659+
==========================...
660660

661661
|
662662
@@ -818,7 +818,7 @@ Do wages increase more with education for males than females?
818818
gender[T.male] 0.2750 0.093 2.972 0.003 0.093 0.457
819819
education 0.0415 0.005 7.647 0.000 0.031 0.052
820820
education:gender[T.male] -0.0134 0.007 -1.919 0.056 -0.027 0.000
821-
==============================================================================
821+
==========================...
822822
...
823823

824824
Can we conclude that education benefits males more than females?

0 commit comments

Comments
 (0)