@@ -101,10 +101,10 @@ def _glm_fit(X, y, model, datafit, penalty, solver):
101101
102102 n_samples , n_features = X_ .shape
103103
104- if issparse (X ):
105- datafit .initialize_sparse (X_ .data , X_ .indptr , X_ .indices , y )
106- else :
107- datafit .initialize (X_ , y )
104+ # if issparse(X):
105+ # datafit.initialize_sparse(X_.data, X_.indptr, X_.indices, y)
106+ # else:
107+ # datafit.initialize(X_, y)
108108
109109 # if model.warm_start and hasattr(model, 'coef_') and model.coef_ is not None:
110110 if solver .warm_start and hasattr (model , 'coef_' ) and model .coef_ is not None :
@@ -1373,11 +1373,11 @@ def fit(self, X, y):
13731373 fit_intercept = False ,
13741374 )
13751375
1376- # solve problem
1377- if not issparse (X ):
1378- datafit .initialize (X , y )
1379- else :
1380- datafit .initialize_sparse (X .data , X .indptr , X .indices , y )
1376+ # # solve problem
1377+ # if not issparse(X):
1378+ # datafit.initialize(X, y)
1379+ # else:
1380+ # datafit.initialize_sparse(X.data, X.indptr, X.indices, y)
13811381
13821382 w , _ , stop_crit = solver .solve (X , y , datafit , penalty )
13831383
0 commit comments