|
| 1 | +import warnings |
| 2 | +from sklearn.exceptions import ConvergenceWarning |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +import scipy.optimize |
| 6 | +from numpy.linalg import norm |
| 7 | + |
| 8 | +from skglm.solvers import BaseSolver |
| 9 | + |
| 10 | + |
| 11 | +class LBFGS(BaseSolver): |
| 12 | + """A wrapper for scipy L-BFGS solver. |
| 13 | +
|
| 14 | + Refer to `scipy L-BFGS-B <https://docs.scipy.org/doc/scipy/reference/optimize. |
| 15 | + minimize-lbfgsb.html#optimize-minimize-lbfgsb>`_ documentation for details. |
| 16 | +
|
| 17 | + Parameters |
| 18 | + ---------- |
| 19 | + max_iter : int, default 20 |
| 20 | + Maximum number of iterations. |
| 21 | +
|
| 22 | + tol : float, default 1e-4 |
| 23 | + Tolerance for convergence. |
| 24 | +
|
| 25 | + verbose : bool, default False |
| 26 | + Amount of verbosity. 0/False is silent. |
| 27 | + """ |
| 28 | + |
| 29 | + def __init__(self, max_iter=50, tol=1e-4, verbose=False): |
| 30 | + self.max_iter = max_iter |
| 31 | + self.tol = tol |
| 32 | + self.verbose = verbose |
| 33 | + |
| 34 | + def solve(self, X, y, datafit, penalty, w_init=None, Xw_init=None): |
| 35 | + |
| 36 | + def objective_function(w): |
| 37 | + Xw = X @ w |
| 38 | + datafit_value = datafit.value(y, w, Xw) |
| 39 | + penalty_value = penalty.value(w) |
| 40 | + |
| 41 | + return datafit_value + penalty_value |
| 42 | + |
| 43 | + def jacobian_function(w): |
| 44 | + Xw = X @ w |
| 45 | + datafit_grad = datafit.gradient(X, y, Xw) |
| 46 | + penalty_grad = penalty.gradient(w) |
| 47 | + |
| 48 | + return datafit_grad + penalty_grad |
| 49 | + |
| 50 | + def callback_post_iter(w_k): |
| 51 | + # save p_obj |
| 52 | + p_obj = objective_function(w_k) |
| 53 | + p_objs_out.append(p_obj) |
| 54 | + |
| 55 | + if self.verbose: |
| 56 | + grad = jacobian_function(w_k) |
| 57 | + stop_crit = norm(grad) |
| 58 | + |
| 59 | + it = len(p_objs_out) |
| 60 | + print( |
| 61 | + f"Iteration {it}: {p_obj:.10f}, " |
| 62 | + f"stopping crit: {stop_crit:.2e}" |
| 63 | + ) |
| 64 | + |
| 65 | + n_features = X.shape[1] |
| 66 | + w = np.zeros(n_features) if w_init is None else w_init |
| 67 | + p_objs_out = [] |
| 68 | + |
| 69 | + result = scipy.optimize.minimize( |
| 70 | + fun=objective_function, |
| 71 | + jac=jacobian_function, |
| 72 | + x0=w, |
| 73 | + method="L-BFGS-B", |
| 74 | + options=dict( |
| 75 | + maxiter=self.max_iter, |
| 76 | + gtol=self.tol |
| 77 | + ), |
| 78 | + callback=callback_post_iter, |
| 79 | + ) |
| 80 | + |
| 81 | + if not result.success: |
| 82 | + warnings.warn( |
| 83 | + f"`LBFGS` did not converge for tol={self.tol:.3e} " |
| 84 | + f"and max_iter={self.max_iter}.\n" |
| 85 | + "Consider increasing `max_iter` and/or `tol`.", |
| 86 | + category=ConvergenceWarning |
| 87 | + ) |
| 88 | + |
| 89 | + w = result.x |
| 90 | + stop_crit = norm(result.jac) |
| 91 | + |
| 92 | + return w, np.asarray(p_objs_out), stop_crit |
0 commit comments