@@ -118,6 +118,7 @@ def test_corrupted_classif(loss, weighting, k, c, multi_class):
118118 random_state = rng ,
119119)
120120
121+
121122# check binary throw an error
122123def test_robust_estimator_unsupported_loss ():
123124 model = RobustWeightedClassifier (multi_class = "binary" )
@@ -259,7 +260,6 @@ def test_corrupted_regression(loss, weighting, k, c):
259260@pytest .mark .parametrize ("loss" , regression_losses )
260261@pytest .mark .parametrize ("weighting" , weightings )
261262def test_corrupted_regression_multidim (loss , weighting ):
262-
263263 n = 1000
264264 d = 10
265265
@@ -299,6 +299,7 @@ def test_regression_corrupted_weights(weighting):
299299y_r = X_r + 0.1 * rng .normal (size = 1000 )
300300X_r = X_r .reshape (- 1 , 1 )
301301
302+
302303# Check that the fit is close to SGD when in extremal parameter cases
303304@pytest .mark .parametrize ("loss" , regression_losses )
304305@pytest .mark .parametrize ("weighting" , weightings )
@@ -383,6 +384,7 @@ def test_corrupted_cluster(weighting, k, c):
383384 n_samples = 100 , centers = np .array ([[- 1 , - 1 ], [1 , 1 ]]), random_state = rng
384385)
385386
387+
386388# Check that the fit is close to KMeans when in extremal parameter cases
387389@pytest .mark .parametrize ("weighting" , weightings )
388390def test_not_robust_cluster (weighting ):
0 commit comments