@@ -316,12 +316,12 @@ def _fit(self, X, y):
316316 # 0 - default state = tentative in original code
317317 # 1 - accepted in original code
318318 # -1 - rejected in original code
319- dec_reg = np .zeros (n_feat , dtype = np . int )
319+ dec_reg = np .zeros (n_feat , dtype = int )
320320 # counts how many times a given feature was more important than
321321 # the best of the shadow features
322- hit_reg = np .zeros (n_feat , dtype = np . int )
322+ hit_reg = np .zeros (n_feat , dtype = int )
323323 # these record the history of the iterations
324- imp_history = np .zeros (n_feat , dtype = np . float )
324+ imp_history = np .zeros (n_feat , dtype = float )
325325 sha_max_history = []
326326
327327 # set n_estimators
@@ -393,13 +393,13 @@ def _fit(self, X, y):
393393
394394 # basic result variables
395395 self .n_features_ = confirmed .shape [0 ]
396- self .support_ = np .zeros (n_feat , dtype = np . bool )
396+ self .support_ = np .zeros (n_feat , dtype = bool )
397397 self .support_ [confirmed ] = 1
398- self .support_weak_ = np .zeros (n_feat , dtype = np . bool )
398+ self .support_weak_ = np .zeros (n_feat , dtype = bool )
399399 self .support_weak_ [tentative ] = 1
400400
401401 # ranking, confirmed variables are rank 1
402- self .ranking_ = np .ones (n_feat , dtype = np . int )
402+ self .ranking_ = np .ones (n_feat , dtype = int )
403403 # tentative variables are rank 2
404404 self .ranking_ [tentative ] = 2
405405 # selected = confirmed and tentative
@@ -425,7 +425,7 @@ def _fit(self, X, y):
425425 self .ranking_ [not_selected ] = ranks
426426 else :
427427 # all are selected, thus we set feature supports to True
428- self .support_ = np .ones (n_feat , dtype = np . bool )
428+ self .support_ = np .ones (n_feat , dtype = bool )
429429
430430 self .importance_history_ = imp_history
431431
0 commit comments