11#include < cmath>
22#include < iostream>
3+ #include < map>
4+ #include < cstring>
35#include < lsl_cpp.h>
46#include < thread>
7+ #include < algorithm>
8+ #include < random>
9+ #ifndef M_PI
10+ #define M_PI 3.14159265358979323846
11+ #endif
512
613
714// define a packed sample struct (here: a 16 bit stereo sample).
@@ -10,31 +17,128 @@ struct stereo_sample {
1017 int16_t l, r;
1118};
1219
20+ struct fake_device {
21+ /*
22+ We create a fake device that will generate data. The inner details are not
23+ so important because typically it will be up to the real data source + SDK
24+ to provide a way to get data.
25+ */
26+ std::size_t n_channels;
27+ double srate;
28+ int64_t pattern_samples;
29+ int64_t head;
30+ std::vector<int16_t > pattern;
31+ std::chrono::steady_clock::time_point last_time;
32+
33+ fake_device (const int16_t n_channels, const float srate)
34+ : n_channels(n_channels), srate(srate), head(0 ) {
35+ pattern_samples = (int64_t )(srate - 0.5 ) + 1 ; // truncate OK.
36+
37+ // Pre-allocate entire test pattern. The data _could_ be generated on the fly
38+ // for a much smaller memory hit, but we also use this example application
39+ // to test LSL Outlet performance so we want to reduce out-of-LSL CPU
40+ // utilization.
41+ int64_t magnitude = std::numeric_limits<int16_t >::max ();
42+ int64_t offset_0 = magnitude / 2 ;
43+ int64_t offset_step = magnitude / n_channels;
44+ pattern.reserve (pattern_samples * n_channels);
45+ for (auto sample_ix = 0 ; sample_ix < pattern_samples; ++sample_ix) {
46+ for (auto chan_ix = 0 ; chan_ix < n_channels; ++chan_ix) {
47+ pattern.emplace_back (
48+ offset_0 + chan_ix * offset_step +
49+ magnitude * static_cast <int16_t >(sin (M_PI * chan_ix * sample_ix / n_channels)));
50+ }
51+ }
52+ last_time = std::chrono::steady_clock::now ();
53+ }
54+
55+ std::vector<int16_t > get_data () {
56+ auto now = std::chrono::steady_clock::now ();
57+ auto elapsed_nano =
58+ std::chrono::duration_cast<std::chrono::nanoseconds>(now - last_time).count ();
59+ std::size_t elapsed_samples = std::size_t (elapsed_nano * srate * 1e-9 ); // truncate OK.
60+ std::vector<int16_t > result;
61+ result.resize (elapsed_samples * n_channels);
62+ int64_t ret_samples = get_data (result);
63+ std::vector<int16_t > output (result.begin (), result.begin () + ret_samples);
64+ return output;
65+ }
66+
67+ std::size_t get_data (std::vector<int16_t > &buffer) {
68+ auto now = std::chrono::steady_clock::now ();
69+ auto elapsed_nano =
70+ std::chrono::duration_cast<std::chrono::nanoseconds>(now - last_time).count ();
71+ int64_t elapsed_samples = std::size_t (elapsed_nano * srate * 1e-9 ); // truncate OK.
72+ elapsed_samples = std::min (elapsed_samples, (int64_t )buffer.size ());
73+ if (false ) {
74+ // The fastest but no patterns.
75+ memset (&buffer[0 ], 23 , buffer.size () * sizeof buffer[0 ]);
76+ } else {
77+ std::size_t end_sample = head + elapsed_samples;
78+ std::size_t nowrap_samples = std::min (pattern_samples - head, elapsed_samples);
79+ memcpy (&buffer[0 ], &(pattern[head]), nowrap_samples);
80+ if (end_sample > pattern_samples) {
81+ memcpy (&buffer[nowrap_samples], &(pattern[0 ]), elapsed_samples - nowrap_samples);
82+ }
83+ }
84+ head = (head + elapsed_samples) % pattern_samples;
85+ last_time += std::chrono::nanoseconds (int64_t (1e9 * elapsed_samples / srate));
86+ return elapsed_samples;
87+ }
88+ };
89+
1390int main (int argc, char **argv) {
91+ std::cout << " SendDataInChunks" << std::endl;
92+ std::cout << " SendDataInChunks StreamName StreamType samplerate n_channels max_buffered chunk_rate" << std::endl;
93+ std::cout << " - max_buffered -- duration in sec (or x100 samples if samplerate is 0) to buffer for each outlet" << std::endl;
94+ std::cout << " - chunk_rate -- number of chunks pushed per second. For this example, make it a common factor of samplingrate and 1000." << std::endl;
95+
1496 std::string name{argc > 1 ? argv[1 ] : " MyAudioStream" }, type{argc > 2 ? argv[2 ] : " Audio" };
15- int samplingrate = argc > 3 ? std::stol (argv[3 ]) : 44100 ;
97+ int samplingrate = argc > 3 ? std::stol (argv[3 ]) : 44100 ; // Here we specify srate, but typically this would come from the device.
98+ int n_channels = argc > 4 ? std::stol (argv[4 ]) : 2 ; // Here we specify n_chans, but typically this would come from theh device.
99+ int32_t max_buffered = argc > 5 ? std::stol (argv[5 ]) : 360 ;
100+ int32_t chunk_rate = argc > 6 ? std::stol (argv[6 ]) : 10 ; // Chunks per second.
101+ int32_t chunk_samples = samplingrate > 0 ? std::max ((samplingrate / chunk_rate), 1 ) : 100 ; // Samples per chunk.
102+ int32_t chunk_duration = 1000 / chunk_rate; // Milliseconds per chunk
103+
16104 try {
17- // make a new stream_info (44.1Khz, 16bit, audio, 2 channels) and open an outlet with it
18- lsl::stream_info info (name, type, 2 , samplingrate, lsl::cf_int16);
19- lsl::stream_outlet outlet (info);
105+ // Prepare the LSL stream.
106+ lsl::stream_info info (name, type, n_channels, samplingrate, lsl::cf_int16);
107+ lsl::stream_outlet outlet (info, 0 , max_buffered);
108+ lsl::xml_element desc = info.desc ();
109+ desc.append_child_value (" manufacturer" , " LSL" );
110+ lsl::xml_element chns = desc.append_child (" channels" );
111+ for (int c = 0 ; c < n_channels; c++) {
112+ lsl::xml_element chn = chns.append_child (" channel" );
113+ chn.append_child_value (" label" , " Chan-" + std::to_string (c));
114+ chn.append_child_value (" unit" , " microvolts" );
115+ chn.append_child_value (" type" , " EEG" );
116+ }
117+
118+ // Create a connection to our device.
119+ fake_device my_device (n_channels, (float )samplingrate);
120+
121+ // Prepare buffer to get data from 'device'.
122+ // The buffer should be largery than you think you need. Here we make it twice as large.
123+ std::vector<int16_t > chunk_buffer (2 * chunk_samples * n_channels);
20124
21125 std::cout << " Now sending data..." << std::endl;
126+
127+ // Your device might have its own timer. Or you can decide how often to poll
128+ // your device, as we do here.
22129 auto nextsample = std::chrono::high_resolution_clock::now ();
23- std::vector<stereo_sample> mychunk (info.nominal_srate () / 10 );
24- int phase = 0 ;
130+ uint64_t sample_counter = 0 ;
25131 for (unsigned c = 0 ;; c++) {
26- // wait a bit and generate a chunk of random data
27- nextsample += std::chrono::milliseconds (100 );
132+ // wait a bit
133+ nextsample += std::chrono::milliseconds (chunk_duration );
28134 std::this_thread::sleep_until (nextsample);
29135
30- for (stereo_sample &sample : mychunk) {
31- sample.l = static_cast <int16_t >(100 * sin (phase / 200 .));
32- sample.r = static_cast <int16_t >(120 * sin (phase / 400 .));
33- phase++;
34- }
136+ // Get data from device
137+ std::size_t returned_samples = my_device.get_data (chunk_buffer);
35138
36- // send it
37- outlet.push_chunk_numeric_structs (mychunk);
139+ // send it to the outlet. push_chunk_multiplexed is one of the more complicated approaches.
140+ // other push_chunk methods are easier but slightly slower.
141+ outlet.push_chunk_multiplexed (chunk_buffer.data (), returned_samples * n_channels, 0.0 , true );
38142 }
39143
40144 } catch (std::exception &e) { std::cerr << " Got an exception: " << e.what () << std::endl; }
0 commit comments