|
1 | | -#include "lsl_cpp.h" |
2 | | -#include <array> |
3 | | -#include <chrono> |
4 | | -#include <iostream> |
5 | | -#include <stdlib.h> |
6 | | -#include <thread> |
7 | | - |
8 | | -/** |
9 | | - * This example program offers an 8-channel stream, float-formatted, that resembles EEG data. |
10 | | - * The example demonstrates also how per-channel meta-data can be specified using the .desc() field |
11 | | - * of the stream information object. |
12 | | - * |
13 | | - * Note that the timer used in the send loop of this program is not particularly accurate. |
14 | | - */ |
15 | | - |
16 | | - |
17 | | -const char *channels[] = {"C3", "C4", "Cz", "FPz", "POz", "CPz", "O1", "O2"}; |
18 | | - |
19 | | -int main(int argc, char *argv[]) { |
20 | | - std::string name, type; |
21 | | - if (argc < 3) { |
22 | | - std::cout |
23 | | - << "This opens a stream under some user-defined name and with a user-defined content " |
24 | | - "type." |
25 | | - << std::endl; |
26 | | - std::cout << "SendData Name Type [n_channels=8] [srate=100] [max_buffered=360]" |
27 | | - << std::endl; |
28 | | - std::cout |
29 | | - << "Please enter the stream name and the stream type (e.g. \"BioSemi EEG\" (without " |
30 | | - "the quotes)):" |
31 | | - << std::endl; |
32 | | - std::cin >> name >> type; |
33 | | - } else { |
34 | | - name = argv[1]; |
35 | | - type = argv[2]; |
36 | | - } |
37 | | - int n_channels = argc > 3 ? std::stol(argv[3]) : 8; |
38 | | - n_channels = n_channels < 8 ? 8 : n_channels; |
39 | | - int samplingrate = argc > 4 ? std::stol(argv[4]) : 100; |
40 | | - int max_buffered = argc > 5 ? std::stol(argv[5]) : 360; |
41 | | - |
42 | | - try { |
43 | | - |
44 | | - // make a new stream_info (100 Hz) |
45 | | - lsl::stream_info info( |
46 | | - name, type, n_channels, samplingrate, lsl::cf_float32, std::string(name) += type); |
47 | | - |
48 | | - // add some description fields |
49 | | - info.desc().append_child_value("manufacturer", "LSL"); |
50 | | - lsl::xml_element chns = info.desc().append_child("channels"); |
51 | | - for (int k = 0; k < n_channels; k++) |
52 | | - chns.append_child("channel") |
53 | | - .append_child_value("label", k < 8 ? channels[k] : "Chan-" + std::to_string(k + 1)) |
54 | | - .append_child_value("unit", "microvolts") |
55 | | - .append_child_value("type", type); |
56 | | - |
57 | | - // make a new outlet |
58 | | - lsl::stream_outlet outlet(info, 0, max_buffered); |
59 | | - std::vector<float> sample(n_channels, 0.0); |
60 | | - |
61 | | - // Your device might have its own timer. Or you can decide how often to poll |
62 | | - // your device, as we do here. |
63 | | - int32_t sample_dur_us = 1000000 / (samplingrate > 0 ? samplingrate : 100); |
64 | | - auto t_start = std::chrono::high_resolution_clock::now(); |
65 | | - auto next_sample_time = t_start; |
66 | | - |
67 | | - // send data forever |
68 | | - std::cout << "Now sending data... " << std::endl; |
69 | | - double starttime = ((double)clock()) / CLOCKS_PER_SEC; |
70 | | - for (unsigned t = 0;; t++) { |
71 | | - // Create random data for the first 8 channels. |
72 | | - for (int c = 0; c < 8; c++) sample[c] = (float)((rand() % 1500) / 500.0 - 1.5); |
73 | | - // For the remaining channels, fill them with a sample counter (wraps at 1M). |
74 | | - std::fill(sample.begin() + 8, sample.end(), (float)(t % 1000000)); |
75 | | - |
76 | | - // Wait until the next expected sample time. |
77 | | - next_sample_time += std::chrono::microseconds(sample_dur_us); |
78 | | - std::this_thread::sleep_until(next_sample_time); |
79 | | - |
80 | | - // send the sample |
81 | | - std::cout << sample[0] << "\t" << sample[n_channels-1] << std::endl; |
82 | | - outlet.push_sample(sample); |
83 | | - } |
84 | | - |
85 | | - } catch (std::exception &e) { std::cerr << "Got an exception: " << e.what() << std::endl; } |
86 | | - std::cout << "Press any key to exit. " << std::endl; |
87 | | - std::cin.get(); |
88 | | - return 0; |
89 | | -} |
| 1 | +#include "lsl_cpp.h" |
| 2 | +#include <array> |
| 3 | +#include <iostream> |
| 4 | +#include <stdlib.h> |
| 5 | +#include <thread> |
| 6 | +#include <time.h> |
| 7 | + |
| 8 | +/** |
| 9 | + * This example program offers an 8-channel stream, float-formatted, that resembles EEG data. |
| 10 | + * The example demonstrates also how per-channel meta-data can be specified using the .desc() field |
| 11 | + * of the stream information object. |
| 12 | + * |
| 13 | + * Note that the timer used in the send loop of this program is not particularly accurate. |
| 14 | + */ |
| 15 | + |
| 16 | + |
| 17 | +const char *channels[] = {"C3", "C4", "Cz", "FPz", "POz", "CPz", "O1", "O2"}; |
| 18 | + |
| 19 | +int main(int argc, char *argv[]) { |
| 20 | + std::string name, type; |
| 21 | + if (argc < 3) { |
| 22 | + std::cout |
| 23 | + << "This opens a stream under some user-defined name and with a user-defined content " |
| 24 | + "type." |
| 25 | + << std::endl; |
| 26 | + std::cout << "SendData Name Type n_channels[8] srate[100] max_buffered[360] sync[false] " |
| 27 | + "contig[true]" |
| 28 | + << std::endl; |
| 29 | + std::cout |
| 30 | + << "Please enter the stream name and the stream type (e.g. \"BioSemi EEG\" (without " |
| 31 | + "the quotes)):" |
| 32 | + << std::endl; |
| 33 | + std::cin >> name >> type; |
| 34 | + } else { |
| 35 | + name = argv[1]; |
| 36 | + type = argv[2]; |
| 37 | + } |
| 38 | + int n_channels = argc > 3 ? std::stol(argv[3]) : 8; |
| 39 | + n_channels = n_channels < 8 ? 8 : n_channels; |
| 40 | + int samplingrate = argc > 4 ? std::stol(argv[4]) : 100; |
| 41 | + int max_buffered = argc > 5 ? std::stol(argv[5]) : 360; |
| 42 | + bool sync = argc > 6 ? std::stol(argv[6]) > 0 : false; |
| 43 | + bool contig = argc > 7 ? std::stol(argv[7]) > 0 : true; |
| 44 | + |
| 45 | + try { |
| 46 | + // if (!sync && !contig) { |
| 47 | + // throw std::invalid_argument( "async is incompatible with discontig |
| 48 | + //push_numeric_bufs (except for strings, not used here)." ); |
| 49 | + // } |
| 50 | + |
| 51 | + // make a new stream_info (100 Hz) |
| 52 | + lsl::stream_info info( |
| 53 | + name, type, n_channels, samplingrate, lsl::cf_float32, std::string(name) += type); |
| 54 | + |
| 55 | + // add some description fields |
| 56 | + info.desc().append_child_value("manufacturer", "LSL"); |
| 57 | + lsl::xml_element chns = info.desc().append_child("channels"); |
| 58 | + for (int k = 0; k < n_channels; k++) |
| 59 | + chns.append_child("channel") |
| 60 | + .append_child_value("label", k < 8 ? channels[k] : "Chan-" + std::to_string(k + 1)) |
| 61 | + .append_child_value("unit", "microvolts") |
| 62 | + .append_child_value("type", type); |
| 63 | + |
| 64 | + // make a new outlet |
| 65 | + lsl::stream_outlet outlet( |
| 66 | + info, 0, max_buffered, sync ? transp_sync_blocking : transp_default); |
| 67 | + |
| 68 | + // Initialize 2 discontiguous data arrays. |
| 69 | + std::vector<float> sample(8, 0.0); |
| 70 | + std::vector<float> extra(n_channels - 8, 0.0); |
| 71 | + // If this is contiguous mode (default) then we combine the arrays. |
| 72 | + if (contig) sample.insert(sample.end(), extra.begin(), extra.end()); |
| 73 | + |
| 74 | + // bytes is used in !contig mode because we need to know how big each buffer is. |
| 75 | + std::array<uint32_t, 2> bytes = { |
| 76 | + 8 * sizeof(float), static_cast<uint32_t>((n_channels - 8) * sizeof(float))}; |
| 77 | + |
| 78 | + // Your device might have its own timer. Or you can decide how often to poll |
| 79 | + // your device, as we do here. |
| 80 | + int32_t sample_dur_us = 1000000 / (samplingrate > 0 ? samplingrate : 100); |
| 81 | + auto t_start = std::chrono::high_resolution_clock::now(); |
| 82 | + auto next_sample_time = t_start; |
| 83 | + |
| 84 | + // send data forever |
| 85 | + std::cout << "Now sending data... " << std::endl; |
| 86 | + for (unsigned t = 0;; t++) { |
| 87 | + |
| 88 | + // Create random data for the first 8 channels. |
| 89 | + for (int c = 0; c < 8; c++) sample[c] = (float)((rand() % 1500) / 500.0 - 1.5); |
| 90 | + // For the remaining channels, fill them with a sample counter (wraps at 1M). |
| 91 | + if (contig) |
| 92 | + std::fill(sample.begin() + 8, sample.end(), (float)(t % 1000000)); |
| 93 | + else |
| 94 | + std::fill(extra.begin(), extra.end(), (float)(t % 1000000)); |
| 95 | + |
| 96 | + // Wait until the next expected sample time. |
| 97 | + next_sample_time += std::chrono::microseconds(sample_dur_us); |
| 98 | + std::this_thread::sleep_until(next_sample_time); |
| 99 | + |
| 100 | + // send the sample |
| 101 | + if (contig) { |
| 102 | + std::cout << sample[0] << "\t" << sample[n_channels-1] << std::endl; |
| 103 | + outlet.push_sample(sample); |
| 104 | + } else { |
| 105 | + // Advanced: Push set of discontiguous buffers. |
| 106 | + std::array<float *, 2> bufs = {sample.data(), extra.data()}; |
| 107 | + outlet.push_numeric_bufs( |
| 108 | + (void **)bufs.data(), bytes.data(), 2, lsl::local_clock(), true); |
| 109 | + } |
| 110 | + } |
| 111 | + |
| 112 | + } catch (std::exception &e) { std::cerr << "Got an exception: " << e.what() << std::endl; } |
| 113 | + std::cout << "Press any key to exit. " << std::endl; |
| 114 | + std::cin.get(); |
| 115 | + return 0; |
| 116 | +} |
0 commit comments