@@ -1393,7 +1393,7 @@ def check_for_data(
13931393 def stat_dataset_to_dataframe (
13941394 data : Union [DataFrame , List [list ], Type ["numpy.array" ]],
13951395 target_value : Union [str , int , float ] = None ,
1396- target_type : str = ' classification'
1396+ target_type : str = " classification" ,
13971397 ) -> DataFrame :
13981398 """
13991399 Convert the user supplied statistical dataset from either a pandas DataFrame,
@@ -1441,14 +1441,14 @@ def stat_dataset_to_dataframe(
14411441 if isinstance (data , pd .DataFrame ):
14421442 if len (data .columns ) == 2 :
14431443 data .columns = ["actual" , "predict" ]
1444- if target_type == ' classification' :
1444+ if target_type == " classification" :
14451445 data ["predict_proba" ] = data ["predict" ].gt (target_value ).astype (int )
14461446 elif len (data .columns ) == 3 :
14471447 data .columns = ["actual" , "predict" , "predict_proba" ]
14481448 elif isinstance (data , list ):
14491449 if len (data ) == 2 :
14501450 data = pd .DataFrame ({"actual" : data [0 ], "predict" : data [1 ]})
1451- if target_type == ' classification' :
1451+ if target_type == " classification" :
14521452 data ["predict_proba" ] = data ["predict" ].gt (target_value ).astype (int )
14531453 elif len (data ) == 3 :
14541454 data = pd .DataFrame (
@@ -1461,7 +1461,7 @@ def stat_dataset_to_dataframe(
14611461 elif isinstance (data , np .ndarray ):
14621462 if len (data ) == 2 :
14631463 data = pd .DataFrame ({"actual" : data [0 , :], "predict" : data [1 , :]})
1464- if target_type == ' classification' :
1464+ if target_type == " classification" :
14651465 data ["predict_proba" ] = data ["predict" ].gt (target_value ).astype (int )
14661466 elif len (data ) == 3 :
14671467 data = pd .DataFrame (
@@ -2372,7 +2372,7 @@ def generate_model_card(
23722372 )
23732373
23742374 # Generates dmcas_misc.json file
2375- if target_type == ' classification' :
2375+ if target_type == " classification" :
23762376 cls .generate_misc (model_files )
23772377
23782378 @staticmethod
@@ -2782,7 +2782,11 @@ def generate_misc(cls, model_files: Union[str, Path, dict]):
27822782 roc_data ["_FN_" ],
27832783 ]
27842784 for c_text , c_val , o_val , t_txt , t_val in zip (
2785- correct_text , correctness_values , outcome_values , target_texts , target_values
2785+ correct_text ,
2786+ correctness_values ,
2787+ outcome_values ,
2788+ target_texts ,
2789+ target_values ,
27862790 ):
27872791 misc_data .append (
27882792 {
@@ -2794,7 +2798,7 @@ def generate_misc(cls, model_files: Union[str, Path, dict]):
27942798 "_cutoffSource_" : "Default" ,
27952799 "_cutoff_" : "0.5" ,
27962800 "TargetText" : t_txt ,
2797- "Target" : t_val
2801+ "Target" : t_val ,
27982802 },
27992803 "rowNumber" : len (misc_data ) + 1 ,
28002804 }
0 commit comments