Skip to content

Commit 3e3f3b9

Browse files
author
Sylwia Majchrowska
committed
add description about classification task
1 parent 3face81 commit 3e3f3b9

File tree

1 file changed

+16
-1
lines changed

1 file changed

+16
-1
lines changed

README.md

Lines changed: 16 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@ Datasets are stored as uncompressed ZIP archives containing uncompressed PNG fil
5454

5555
Custom datasets can be created from a folder containing images; see [`python dataset_tool.py --help`](./docs/dataset-tool-help.txt) for more information. Alternatively, the folder can also be used directly as a dataset, without running it through `dataset_tool.py` first, but doing so may lead to suboptimal performance.
5656

57-
**ISIC 2020**: Download the [ISIC 2020 dataset](https://www.kaggle.com/c/siim-isic-melanoma-classification) and create ZIP archive:
57+
**ISIC 2020**: Download the [ISIC 2020 dataset](https://www.kaggle.com/nroman/melanoma-external-malignant-256) and create ZIP archive:
5858

5959
```.bash
6060
python dataset_tool.py --source=/tmp/isic-dataset --dest=~/datasets/isic256x256.zip --width=256 --height=256
@@ -146,6 +146,21 @@ python generate.py --outdir=out --projected_w=out/projected_w.npz \
146146
--class=1 --network=~/pretrained/conditionalGAN.pkl
147147
```
148148

149+
## Classification with EfficientNet-B2
150+
151+
In our studies generated synthetic images were used in binary classification task between melanoma and non-melanoma cases. To run training with Efficientnet-B2 use following command:
152+
153+
```.bash
154+
python melanoma_classifier.py --syn_data_path=~/generated/ \
155+
--real_data_path=~/melanoma-external-malignant-256/ \
156+
--synt_n_imgs="0,15"
157+
```
158+
159+
In above example `--syn_data_path` argument indicates path for synthetic images,
160+
`--real_data_path` - real images and `--synt_n_imgs` stands for n non-melanoma, k melanoma synthetic images (measured in kimg) to add to the real data. We reported our studis using wandb (use `--wandb_flag` argument to report accuracy and loss for your own experiments). `--only_reals` flag enable training only for real images, while `--only_syn` will allow to take all artificial images from directory with synthetic images.
161+
162+
To make a diagnosis using trained model use [`predict.py`](predict.py) script.
163+
149164
## Measuring authenticity
150165

151166
We additionaly calculated cosine distance between embeddings from tsv file.

0 commit comments

Comments
 (0)