Skip to content

Commit 4b5c7ca

Browse files
committed
update readme & other scripts, add run_defect, and support bart
1 parent e733433 commit 4b5c7ca

File tree

1 file changed

+331
-0
lines changed

1 file changed

+331
-0
lines changed

run_defect.py

Lines changed: 331 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,331 @@
1+
# coding=utf-8
2+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4+
#
5+
# Licensed under the Apache License, Version 2.0 (the "License");
6+
# you may not use this file except in compliance with the License.
7+
# You may obtain a copy of the License at
8+
#
9+
# http://www.apache.org/licenses/LICENSE-2.0
10+
#
11+
# Unless required by applicable law or agreed to in writing, software
12+
# distributed under the License is distributed on an "AS IS" BASIS,
13+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14+
# See the License for the specific language governing permissions and
15+
# limitations under the License.
16+
"""
17+
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
18+
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
19+
using a masked language modeling (MLM) loss.
20+
"""
21+
22+
from __future__ import absolute_import
23+
import os
24+
import sys
25+
import torch
26+
import logging
27+
import argparse
28+
import math
29+
import numpy as np
30+
from io import open
31+
from tqdm import tqdm
32+
33+
try:
34+
from torch.utils.tensorboard import SummaryWriter
35+
except:
36+
from tensorboardX import SummaryWriter
37+
38+
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler, TensorDataset
39+
from torch.utils.data.distributed import DistributedSampler
40+
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
41+
RobertaConfig, RobertaModel, RobertaTokenizer,
42+
BartConfig, BartForConditionalGeneration, BartTokenizer,
43+
T5Config, T5ForConditionalGeneration, T5Tokenizer)
44+
import multiprocessing
45+
import pdb
46+
import time
47+
48+
from models import DefectModel
49+
from configs import add_args, set_seed
50+
from utils import get_filenames, get_elapse_time, load_and_cache_defect_data
51+
from models import get_model_size, load_codet5
52+
53+
MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer),
54+
't5': (T5Config, T5ForConditionalGeneration, T5Tokenizer),
55+
'codet5': (T5Config, T5ForConditionalGeneration, RobertaTokenizer),
56+
'bart': (BartConfig, BartForConditionalGeneration, BartTokenizer)}
57+
58+
cpu_cont = multiprocessing.cpu_count()
59+
60+
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
61+
datefmt='%m/%d/%Y %H:%M:%S',
62+
level=logging.INFO)
63+
logger = logging.getLogger(__name__)
64+
65+
66+
def evaluate(args, model, eval_examples, eval_data, write_to_pred=False):
67+
eval_sampler = SequentialSampler(eval_data)
68+
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
69+
70+
# Eval!
71+
logger.info("***** Running evaluation *****")
72+
logger.info(" Num examples = %d", len(eval_examples))
73+
logger.info(" Num batches = %d", len(eval_dataloader))
74+
logger.info(" Batch size = %d", args.eval_batch_size)
75+
eval_loss = 0.0
76+
nb_eval_steps = 0
77+
model.eval()
78+
logits = []
79+
labels = []
80+
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Evaluating"):
81+
inputs = batch[0].to(args.device)
82+
label = batch[1].to(args.device)
83+
with torch.no_grad():
84+
lm_loss, logit = model(inputs, label)
85+
eval_loss += lm_loss.mean().item()
86+
logits.append(logit.cpu().numpy())
87+
labels.append(label.cpu().numpy())
88+
nb_eval_steps += 1
89+
logits = np.concatenate(logits, 0)
90+
labels = np.concatenate(labels, 0)
91+
preds = logits[:, 1] > 0.5
92+
eval_acc = np.mean(labels == preds)
93+
eval_loss = eval_loss / nb_eval_steps
94+
perplexity = torch.tensor(eval_loss)
95+
96+
result = {
97+
"eval_loss": float(perplexity),
98+
"eval_acc": round(eval_acc, 4),
99+
}
100+
101+
logger.info("***** Eval results *****")
102+
for key in sorted(result.keys()):
103+
logger.info(" %s = %s", key, str(round(result[key], 4)))
104+
105+
if write_to_pred:
106+
with open(os.path.join(args.output_dir, "predictions.txt"), 'w') as f:
107+
for example, pred in zip(eval_examples, preds):
108+
if pred:
109+
f.write(str(example.idx) + '\t1\n')
110+
else:
111+
f.write(str(example.idx) + '\t0\n')
112+
113+
return result
114+
115+
116+
def main():
117+
parser = argparse.ArgumentParser()
118+
t0 = time.time()
119+
args = add_args(parser)
120+
logger.info(args)
121+
122+
# Setup CUDA, GPU & distributed training
123+
if args.local_rank == -1 or args.no_cuda:
124+
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
125+
args.n_gpu = torch.cuda.device_count()
126+
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
127+
torch.cuda.set_device(args.local_rank)
128+
device = torch.device("cuda", args.local_rank)
129+
torch.distributed.init_process_group(backend='nccl')
130+
args.n_gpu = 1
131+
132+
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, cpu count: %d",
133+
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), cpu_cont)
134+
args.device = device
135+
set_seed(args)
136+
137+
# Build model
138+
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
139+
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
140+
model = model_class.from_pretrained(args.model_name_or_path)
141+
142+
if args.model_type == 'codet5':
143+
# reset special ids: pad_token_id = 0, bos_token_id = 1, eos_token_id = 2
144+
config, model, tokenizer = load_codet5(config, model, tokenizer_class,
145+
load_extra_ids=False, add_lang_ids=False,
146+
tokenizer_path=args.tokenizer_path)
147+
else:
148+
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name)
149+
150+
model = DefectModel(model, config, tokenizer, args)
151+
logger.info("Finish loading model [%s] from %s", get_model_size(model), args.model_name_or_path)
152+
153+
if args.load_model_path is not None:
154+
logger.info("Reload model from {}".format(args.load_model_path))
155+
model.load_state_dict(torch.load(args.load_model_path))
156+
157+
model.to(device)
158+
159+
pool = multiprocessing.Pool(cpu_cont)
160+
args.train_filename, args.dev_filename, args.test_filename = get_filenames(args.data_dir, args.task, args.sub_task)
161+
fa = open(os.path.join(args.output_dir, 'summary.log'), 'a+')
162+
163+
if args.do_train:
164+
if args.n_gpu > 1:
165+
# multi-gpu training
166+
model = torch.nn.DataParallel(model)
167+
if args.local_rank in [-1, 0] and args.data_num == -1:
168+
summary_fn = '{}/{}'.format(args.summary_dir, '/'.join(args.output_dir.split('/')[1:]))
169+
tb_writer = SummaryWriter(summary_fn)
170+
171+
# Prepare training data loader
172+
train_examples, train_data = load_and_cache_defect_data(args, args.train_filename, pool, tokenizer, 'train',
173+
is_sample=False)
174+
if args.local_rank == -1:
175+
train_sampler = RandomSampler(train_data)
176+
else:
177+
train_sampler = DistributedSampler(train_data)
178+
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
179+
180+
num_train_optimization_steps = args.num_train_epochs * len(train_dataloader)
181+
save_steps = max(len(train_dataloader), 1)
182+
183+
# Prepare optimizer and schedule (linear warmup and decay)
184+
no_decay = ['bias', 'LayerNorm.weight']
185+
optimizer_grouped_parameters = [
186+
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
187+
'weight_decay': args.weight_decay},
188+
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
189+
]
190+
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
191+
192+
if args.warmup_steps < 1:
193+
warmup_steps = num_train_optimization_steps * args.warmup_steps
194+
else:
195+
warmup_steps = int(args.warmup_steps)
196+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps,
197+
num_training_steps=num_train_optimization_steps)
198+
199+
# Start training
200+
train_example_num = len(train_data)
201+
logger.info("***** Running training *****")
202+
logger.info(" Num examples = %d", train_example_num)
203+
logger.info(" Batch size = %d", args.train_batch_size)
204+
logger.info(" Batch num = %d", math.ceil(train_example_num / args.train_batch_size))
205+
logger.info(" Num epoch = %d", args.num_train_epochs)
206+
207+
global_step, best_acc = 0, 0
208+
not_acc_inc_cnt = 0
209+
is_early_stop = False
210+
for cur_epoch in range(args.start_epoch, int(args.num_train_epochs)):
211+
bar = tqdm(train_dataloader, total=len(train_dataloader), desc="Training")
212+
nb_tr_examples, nb_tr_steps, tr_loss = 0, 0, 0
213+
model.train()
214+
for step, batch in enumerate(bar):
215+
batch = tuple(t.to(device) for t in batch)
216+
source_ids, labels = batch
217+
# pdb.set_trace()
218+
219+
loss, logits = model(source_ids, labels)
220+
221+
if args.n_gpu > 1:
222+
loss = loss.mean() # mean() to average on multi-gpu.
223+
if args.gradient_accumulation_steps > 1:
224+
loss = loss / args.gradient_accumulation_steps
225+
tr_loss += loss.item()
226+
227+
nb_tr_examples += source_ids.size(0)
228+
nb_tr_steps += 1
229+
loss.backward()
230+
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
231+
232+
if nb_tr_steps % args.gradient_accumulation_steps == 0:
233+
# Update parameters
234+
optimizer.step()
235+
optimizer.zero_grad()
236+
scheduler.step()
237+
global_step += 1
238+
train_loss = round(tr_loss * args.gradient_accumulation_steps / nb_tr_steps, 4)
239+
bar.set_description("[{}] Train loss {}".format(cur_epoch, round(train_loss, 3)))
240+
241+
if (step + 1) % save_steps == 0 and args.do_eval:
242+
logger.info("***** CUDA.empty_cache() *****")
243+
torch.cuda.empty_cache()
244+
245+
eval_examples, eval_data = load_and_cache_defect_data(args, args.dev_filename, pool, tokenizer,
246+
'valid', is_sample=False)
247+
248+
result = evaluate(args, model, eval_examples, eval_data)
249+
eval_acc = result['eval_acc']
250+
251+
if args.data_num == -1:
252+
tb_writer.add_scalar('dev_acc', round(eval_acc, 4), cur_epoch)
253+
254+
# save last checkpoint
255+
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last')
256+
if not os.path.exists(last_output_dir):
257+
os.makedirs(last_output_dir)
258+
259+
if True or args.data_num == -1 and args.save_last_checkpoints:
260+
model_to_save = model.module if hasattr(model, 'module') else model
261+
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
262+
torch.save(model_to_save.state_dict(), output_model_file)
263+
logger.info("Save the last model into %s", output_model_file)
264+
265+
if eval_acc > best_acc:
266+
not_acc_inc_cnt = 0
267+
logger.info(" Best acc: %s", round(eval_acc, 4))
268+
logger.info(" " + "*" * 20)
269+
fa.write("[%d] Best acc changed into %.4f\n" % (cur_epoch, round(eval_acc, 4)))
270+
best_acc = eval_acc
271+
# Save best checkpoint for best ppl
272+
output_dir = os.path.join(args.output_dir, 'checkpoint-best-acc')
273+
if not os.path.exists(output_dir):
274+
os.makedirs(output_dir)
275+
if args.data_num == -1 or True:
276+
model_to_save = model.module if hasattr(model, 'module') else model
277+
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
278+
torch.save(model_to_save.state_dict(), output_model_file)
279+
logger.info("Save the best ppl model into %s", output_model_file)
280+
else:
281+
not_acc_inc_cnt += 1
282+
logger.info("acc does not increase for %d epochs", not_acc_inc_cnt)
283+
if not_acc_inc_cnt > args.patience:
284+
logger.info("Early stop as acc do not increase for %d times", not_acc_inc_cnt)
285+
fa.write("[%d] Early stop as not_acc_inc_cnt=%d\n" % (cur_epoch, not_acc_inc_cnt))
286+
is_early_stop = True
287+
break
288+
289+
model.train()
290+
if is_early_stop:
291+
break
292+
293+
logger.info("***** CUDA.empty_cache() *****")
294+
torch.cuda.empty_cache()
295+
296+
if args.local_rank in [-1, 0] and args.data_num == -1:
297+
tb_writer.close()
298+
299+
if args.do_test:
300+
logger.info(" " + "***** Testing *****")
301+
logger.info(" Batch size = %d", args.eval_batch_size)
302+
303+
for criteria in ['best-acc']: # , 'last'
304+
file = os.path.join(args.output_dir, 'checkpoint-{}/pytorch_model.bin'.format(criteria))
305+
# logger.info("*" * 10 + "Start testing" + "*" * 10)
306+
logger.info("Reload model from {}".format(file))
307+
model.load_state_dict(torch.load(file))
308+
309+
if args.n_gpu > 1:
310+
# multi-gpu training
311+
model = torch.nn.DataParallel(model)
312+
313+
eval_examples, eval_data = load_and_cache_defect_data(args, args.test_filename, pool, tokenizer, 'test',
314+
False)
315+
316+
result = evaluate(args, model, eval_examples, eval_data, write_to_pred=True)
317+
logger.info(" test_acc=%.4f", result['eval_acc'])
318+
logger.info(" " + "*" * 20)
319+
320+
fa.write("[%s] test-acc: %.4f\n" % (criteria, result['eval_acc']))
321+
if args.res_fn:
322+
with open(args.res_fn, 'a+') as f:
323+
f.write('[Time: {}] {}\n'.format(get_elapse_time(t0), file))
324+
f.write("[%s] acc: %.4f\n\n" % (
325+
criteria, result['eval_acc']))
326+
fa.close()
327+
328+
329+
if __name__ == "__main__":
330+
# print(' '.join(sys.argv[1:]))
331+
main()

0 commit comments

Comments
 (0)