@@ -5,7 +5,7 @@ use cauchy::*;
55use num_traits:: { ToPrimitive , Zero } ;
66
77/// Result of LeastSquares
8- pub struct LeastSquaresOutput < A : Scalar > {
8+ pub struct LeastSquaresOwned < A : Scalar > {
99 /// singular values
1010 pub singular_values : Vec < A :: Real > ,
1111 /// The rank of the input matrix A
@@ -21,7 +21,7 @@ pub trait LeastSquaresSvdDivideConquer_: Scalar {
2121 a_layout : MatrixLayout ,
2222 a : & mut [ Self ] ,
2323 b : & mut [ Self ] ,
24- ) -> Result < LeastSquaresOutput < Self > > ;
24+ ) -> Result < LeastSquaresOwned < Self > > ;
2525
2626 /// Solve least square problems $\argmin_X \| AX - B\|$
2727 fn least_squares_nrhs (
@@ -46,7 +46,7 @@ macro_rules! impl_least_squares {
4646 l: MatrixLayout ,
4747 a: & mut [ Self ] ,
4848 b: & mut [ Self ] ,
49- ) -> Result <LeastSquaresOutput <Self >> {
49+ ) -> Result <LeastSquaresOwned <Self >> {
5050 let b_layout = l. resized( b. len( ) as i32 , 1 ) ;
5151 Self :: least_squares_nrhs( l, a, b_layout, b)
5252 }
@@ -56,7 +56,7 @@ macro_rules! impl_least_squares {
5656 a: & mut [ Self ] ,
5757 b_layout: MatrixLayout ,
5858 b: & mut [ Self ] ,
59- ) -> Result <LeastSquaresOutput <Self >> {
59+ ) -> Result <LeastSquaresOwned <Self >> {
6060 // Minimize |b - Ax|_2
6161 //
6262 // where
@@ -160,7 +160,7 @@ macro_rules! impl_least_squares {
160160 transpose_over( b_layout, & b_t, b) ;
161161 }
162162
163- Ok ( LeastSquaresOutput {
163+ Ok ( LeastSquaresOwned {
164164 singular_values,
165165 rank,
166166 } )
0 commit comments