5252//! According to the property input metrix, several types of triangular decomposition are used:
5353//!
5454//! - [solve] module provides methods for LU-decomposition for general matrix.
55- //! - [solveh] module provides methods for Bunch-Kaufman diagonal pivoting method for symmetric/hermite indefinite matrix.
56- //! - [Cholesky_] triat provides methods for Cholesky decomposition for symmetric/hermite positive dinite matrix.
55+ //! - [solveh] module provides methods for Bunch-Kaufman diagonal pivoting method for symmetric/Hermitian indefinite matrix.
56+ //! - [cholesky] module provides methods for Cholesky decomposition for symmetric/Hermitian positive dinite matrix.
5757//!
5858//! Eigenvalue Problem
5959//! -------------------
6262//! there are several types of eigenvalue problem API
6363//!
6464//! - [eig] module for eigenvalue problem for general matrix.
65- //! - [eigh] module for eigenvalue problem for symmetric/hermite matrix.
66- //! - [eigh_generalized] module for generalized eigenvalue problem for symmetric/hermite matrix.
65+ //! - [eigh] module for eigenvalue problem for symmetric/Hermitian matrix.
66+ //! - [eigh_generalized] module for generalized eigenvalue problem for symmetric/Hermitian matrix.
6767//!
6868//! Singular Value Decomposition
6969//! -----------------------------
@@ -88,6 +88,7 @@ pub mod error;
8888pub mod flags;
8989pub mod layout;
9090
91+ pub mod cholesky;
9192pub mod eig;
9293pub mod eigh;
9394pub mod eigh_generalized;
@@ -99,7 +100,6 @@ pub mod svd;
99100pub mod svddc;
100101
101102mod alloc;
102- mod cholesky;
103103mod opnorm;
104104mod rcond;
105105mod triangular;
@@ -130,15 +130,15 @@ pub trait Lapack: OperatorNorm_ + Triangular_ + Tridiagonal_ + Rcond_ {
130130 a : & mut [ Self ] ,
131131 ) -> Result < ( Vec < Self :: Complex > , Vec < Self :: Complex > ) > ;
132132
133- /// Compute right eigenvalue and eigenvectors for a symmetric or hermite matrix
133+ /// Compute right eigenvalue and eigenvectors for a symmetric or Hermitian matrix
134134 fn eigh (
135135 calc_eigenvec : bool ,
136136 layout : MatrixLayout ,
137137 uplo : UPLO ,
138138 a : & mut [ Self ] ,
139139 ) -> Result < Vec < Self :: Real > > ;
140140
141- /// Compute right eigenvalue and eigenvectors for a symmetric or hermite matrix
141+ /// Compute right eigenvalue and eigenvectors for a symmetric or Hermitian matrix
142142 fn eigh_generalized (
143143 calc_eigenvec : bool ,
144144 layout : MatrixLayout ,
@@ -217,7 +217,6 @@ pub trait Lapack: OperatorNorm_ + Triangular_ + Tridiagonal_ + Rcond_ {
217217
218218 /// Factorize symmetric/Hermitian matrix using Bunch-Kaufman diagonal pivoting method
219219 ///
220- ///
221220 /// For a given symmetric matrix $A$,
222221 /// this method factorizes $A = U^T D U$ or $A = L D L^T$ where
223222 ///
@@ -233,13 +232,13 @@ pub trait Lapack: OperatorNorm_ + Triangular_ + Tridiagonal_ + Rcond_ {
233232 ///
234233 fn bk ( l : MatrixLayout , uplo : UPLO , a : & mut [ Self ] ) -> Result < Pivot > ;
235234
236- /// Compute inverse matrix $A^{-1}$ of symmetric/Hermitian matrix using factroized result
235+ /// Compute inverse matrix $A^{-1}$ using the result of [Lapack::bk]
237236 fn invh ( l : MatrixLayout , uplo : UPLO , a : & mut [ Self ] , ipiv : & Pivot ) -> Result < ( ) > ;
238237
239- /// Solve symmetric/Hermitian linear equation $Ax = b$ using factroized result
238+ /// Solve symmetric/Hermitian linear equation $Ax = b$ using the result of [Lapack::bk]
240239 fn solveh ( l : MatrixLayout , uplo : UPLO , a : & [ Self ] , ipiv : & Pivot , b : & mut [ Self ] ) -> Result < ( ) > ;
241240
242- /// Solve symmetric/hermite positive-definite linear equations using Cholesky decomposition
241+ /// Solve symmetric/Hermitian positive-definite linear equations using Cholesky decomposition
243242 ///
244243 /// For a given positive definite matrix $A$,
245244 /// Cholesky decomposition is described as $A = U^T U$ or $A = LL^T$ where
@@ -250,14 +249,15 @@ pub trait Lapack: OperatorNorm_ + Triangular_ + Tridiagonal_ + Rcond_ {
250249 /// This is designed as two step computation according to LAPACK API
251250 ///
252251 /// 1. Factorize input matrix $A$ into $L$ or $U$
253- /// 2. Solve linear equation $Ax = b$ or compute inverse matrix $A^{-1}$
254- /// using $U$ or $L$.
252+ /// 2. Solve linear equation $Ax = b$ by [Lapack::solve_cholesky]
253+ /// or compute inverse matrix $A^{-1}$ by [Lapack::inv_cholesky]
254+ ///
255255 fn cholesky ( l : MatrixLayout , uplo : UPLO , a : & mut [ Self ] ) -> Result < ( ) > ;
256256
257- /// Compute inverse matrix $A^{-1}$ using $U$ or $L$
257+ /// Compute inverse matrix $A^{-1}$ using $U$ or $L$ calculated by [Lapack::cholesky]
258258 fn inv_cholesky ( l : MatrixLayout , uplo : UPLO , a : & mut [ Self ] ) -> Result < ( ) > ;
259259
260- /// Solve linear equation $Ax = b$ using $U$ or $L$
260+ /// Solve linear equation $Ax = b$ using $U$ or $L$ calculated by [Lapack::cholesky]
261261 fn solve_cholesky ( l : MatrixLayout , uplo : UPLO , a : & [ Self ] , b : & mut [ Self ] ) -> Result < ( ) > ;
262262}
263263
0 commit comments