@@ -262,7 +262,41 @@ pub trait Lapack: Triangular_ + Tridiagonal_ {
262262 /// `anorm` should be the 1-norm of the matrix `a`.
263263 fn rcond ( l : MatrixLayout , a : & [ Self ] , anorm : Self :: Real ) -> Result < Self :: Real > ;
264264
265- /// Compute operator norm of a matrix
265+ /// Compute norm of matrices
266+ ///
267+ /// For a $n \times m$ matrix
268+ /// $$
269+ /// A = \begin{pmatrix}
270+ /// a_{11} & \cdots & a_{1m} \\\\
271+ /// \vdots & \ddots & \vdots \\\\
272+ /// a_{n1} & \cdots & a_{nm}
273+ /// \end{pmatrix}
274+ /// $$
275+ /// LAPACK can compute three types of norms:
276+ ///
277+ /// - Operator norm based on 1-norm for its domain linear space:
278+ /// $$
279+ /// \Vert A \Vert_1 = \sup_{\Vert x \Vert_1 = 1} \Vert Ax \Vert_1
280+ /// = \max_{1 \le j \le m } \sum_{i=1}^n |a_{ij}|
281+ /// $$
282+ /// where
283+ /// $\Vert x\Vert_1 = \sum_{j=1}^m |x_j|$
284+ /// is 1-norm for a vector $x$.
285+ ///
286+ /// - Operator norm based on $\infty$-norm for its domain linear space:
287+ /// $$
288+ /// \Vert A \Vert_\infty = \sup_{\Vert x \Vert_\infty = 1} \Vert Ax \Vert_\infty
289+ /// = \max_{1 \le i \le n } \sum_{j=1}^m |a_{ij}|
290+ /// $$
291+ /// where
292+ /// $\Vert x\Vert_\infty = \max_{j=1}^m |x_j|$
293+ /// is $\infty$-norm for a vector $x$.
294+ ///
295+ /// - Frobenious norm
296+ /// $$
297+ /// \Vert A \Vert_F = \sqrt{\mathrm{Tr} \left(AA^\dagger\right)} = \sqrt{\sum_{i=1}^n \sum_{j=1}^m |a_{ij}|^2}
298+ /// $$
299+ ///
266300 fn opnorm ( t : NormType , l : MatrixLayout , a : & [ Self ] ) -> Self :: Real ;
267301}
268302
0 commit comments