|
8 | 8 | // option. This file may not be copied, modified, or distributed |
9 | 9 | // except according to those terms. |
10 | 10 |
|
11 | | -#![allow(non_upper_case_globals)] |
12 | | - |
13 | | -use llvm::{Integer, Pointer, Float, Double, Struct, Array, Vector}; |
14 | | -use abi::{self, FnType, ArgType}; |
| 11 | +use abi::{FnType, ArgType, LayoutExt, Reg, RegKind, Uniform}; |
15 | 12 | use context::CrateContext; |
16 | | -use type_::Type; |
17 | | - |
18 | | -fn ty_size(ty: Type) -> usize { |
19 | | - abi::ty_size(ty, 8) |
20 | | -} |
21 | | - |
22 | | -fn is_homogenous_aggregate_ty(ty: Type) -> Option<(Type, u64)> { |
23 | | - fn check_array(ty: Type) -> Option<(Type, u64)> { |
24 | | - let len = ty.array_length() as u64; |
25 | | - if len == 0 { |
26 | | - return None |
27 | | - } |
28 | | - let elt = ty.element_type(); |
29 | | - |
30 | | - // if our element is an HFA/HVA, so are we; multiply members by our len |
31 | | - is_homogenous_aggregate_ty(elt).map(|(base_ty, members)| (base_ty, len * members)) |
32 | | - } |
33 | | - |
34 | | - fn check_struct(ty: Type) -> Option<(Type, u64)> { |
35 | | - let str_tys = ty.field_types(); |
36 | | - if str_tys.len() == 0 { |
37 | | - return None |
38 | | - } |
39 | | - |
40 | | - let mut prev_base_ty = None; |
41 | | - let mut members = 0; |
42 | | - for opt_homog_agg in str_tys.iter().map(|t| is_homogenous_aggregate_ty(*t)) { |
43 | | - match (prev_base_ty, opt_homog_agg) { |
44 | | - // field isn't itself an HFA, so we aren't either |
45 | | - (_, None) => return None, |
46 | | - |
47 | | - // first field - store its type and number of members |
48 | | - (None, Some((field_ty, field_members))) => { |
49 | | - prev_base_ty = Some(field_ty); |
50 | | - members = field_members; |
51 | | - }, |
52 | 13 |
|
53 | | - // 2nd or later field - give up if it's a different type; otherwise incr. members |
54 | | - (Some(prev_ty), Some((field_ty, field_members))) => { |
55 | | - if prev_ty != field_ty { |
56 | | - return None; |
57 | | - } |
58 | | - members += field_members; |
59 | | - } |
60 | | - } |
61 | | - } |
62 | | - |
63 | | - // Because of previous checks, we know prev_base_ty is Some(...) because |
64 | | - // 1. str_tys has at least one element; and |
65 | | - // 2. prev_base_ty was filled in (or we would've returned early) |
66 | | - let (base_ty, members) = (prev_base_ty.unwrap(), members); |
| 14 | +fn is_homogenous_aggregate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tcx>) |
| 15 | + -> Option<Uniform> { |
| 16 | + arg.layout.homogenous_aggregate(ccx).and_then(|unit| { |
| 17 | + let size = arg.layout.size(ccx); |
67 | 18 |
|
68 | | - // Ensure there is no padding. |
69 | | - if ty_size(ty) == ty_size(base_ty) * (members as usize) { |
70 | | - Some((base_ty, members)) |
71 | | - } else { |
72 | | - None |
| 19 | + // Ensure we have at most four uniquely addressable members. |
| 20 | + if size > unit.size.checked_mul(4, ccx).unwrap() { |
| 21 | + return None; |
73 | 22 | } |
74 | | - } |
75 | 23 |
|
76 | | - let homog_agg = match ty.kind() { |
77 | | - Float => Some((ty, 1)), |
78 | | - Double => Some((ty, 1)), |
79 | | - Array => check_array(ty), |
80 | | - Struct => check_struct(ty), |
81 | | - Vector => match ty_size(ty) { |
82 | | - 4|8 => Some((ty, 1)), |
83 | | - _ => None |
84 | | - }, |
85 | | - _ => None |
86 | | - }; |
| 24 | + let valid_unit = match unit.kind { |
| 25 | + RegKind::Integer => false, |
| 26 | + RegKind::Float => true, |
| 27 | + RegKind::Vector => size.bits() == 64 || size.bits() == 128 |
| 28 | + }; |
87 | 29 |
|
88 | | - // Ensure we have at most four uniquely addressable members |
89 | | - homog_agg.and_then(|(base_ty, members)| { |
90 | | - if members > 0 && members <= 4 { |
91 | | - Some((base_ty, members)) |
| 30 | + if valid_unit { |
| 31 | + Some(Uniform { |
| 32 | + unit, |
| 33 | + total: size |
| 34 | + }) |
92 | 35 | } else { |
93 | 36 | None |
94 | 37 | } |
95 | 38 | }) |
96 | 39 | } |
97 | 40 |
|
98 | | -fn classify_ret_ty(ccx: &CrateContext, ret: &mut ArgType) { |
99 | | - if is_reg_ty(ret.ty) { |
| 41 | +fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ret: &mut ArgType<'tcx>) { |
| 42 | + if !ret.layout.is_aggregate() { |
100 | 43 | ret.extend_integer_width_to(32); |
101 | 44 | return; |
102 | 45 | } |
103 | | - if let Some((base_ty, members)) = is_homogenous_aggregate_ty(ret.ty) { |
104 | | - ret.cast = Some(Type::array(&base_ty, members)); |
| 46 | + if let Some(uniform) = is_homogenous_aggregate(ccx, ret) { |
| 47 | + ret.cast_to(ccx, uniform); |
105 | 48 | return; |
106 | 49 | } |
107 | | - let size = ty_size(ret.ty); |
108 | | - if size <= 16 { |
109 | | - let llty = if size <= 1 { |
110 | | - Type::i8(ccx) |
111 | | - } else if size <= 2 { |
112 | | - Type::i16(ccx) |
113 | | - } else if size <= 4 { |
114 | | - Type::i32(ccx) |
115 | | - } else if size <= 8 { |
116 | | - Type::i64(ccx) |
| 50 | + let size = ret.layout.size(ccx); |
| 51 | + let bits = size.bits(); |
| 52 | + if bits <= 128 { |
| 53 | + let unit = if bits <= 8 { |
| 54 | + Reg::i8() |
| 55 | + } else if bits <= 16 { |
| 56 | + Reg::i16() |
| 57 | + } else if bits <= 32 { |
| 58 | + Reg::i32() |
117 | 59 | } else { |
118 | | - Type::array(&Type::i64(ccx), ((size + 7 ) / 8 ) as u64) |
| 60 | + Reg::i64() |
119 | 61 | }; |
120 | | - ret.cast = Some(llty); |
| 62 | + |
| 63 | + ret.cast_to(ccx, Uniform { |
| 64 | + unit, |
| 65 | + total: size |
| 66 | + }); |
121 | 67 | return; |
122 | 68 | } |
123 | 69 | ret.make_indirect(ccx); |
124 | 70 | } |
125 | 71 |
|
126 | | -fn classify_arg_ty(ccx: &CrateContext, arg: &mut ArgType) { |
127 | | - if is_reg_ty(arg.ty) { |
| 72 | +fn classify_arg_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tcx>) { |
| 73 | + if !arg.layout.is_aggregate() { |
128 | 74 | arg.extend_integer_width_to(32); |
129 | 75 | return; |
130 | 76 | } |
131 | | - if let Some((base_ty, members)) = is_homogenous_aggregate_ty(arg.ty) { |
132 | | - arg.cast = Some(Type::array(&base_ty, members)); |
| 77 | + if let Some(uniform) = is_homogenous_aggregate(ccx, arg) { |
| 78 | + arg.cast_to(ccx, uniform); |
133 | 79 | return; |
134 | 80 | } |
135 | | - let size = ty_size(arg.ty); |
136 | | - if size <= 16 { |
137 | | - let llty = if size == 0 { |
138 | | - Type::array(&Type::i64(ccx), 0) |
139 | | - } else if size == 1 { |
140 | | - Type::i8(ccx) |
141 | | - } else if size == 2 { |
142 | | - Type::i16(ccx) |
143 | | - } else if size <= 4 { |
144 | | - Type::i32(ccx) |
145 | | - } else if size <= 8 { |
146 | | - Type::i64(ccx) |
| 81 | + let size = arg.layout.size(ccx); |
| 82 | + let bits = size.bits(); |
| 83 | + if bits <= 128 { |
| 84 | + let unit = if bits <= 8 { |
| 85 | + Reg::i8() |
| 86 | + } else if bits <= 16 { |
| 87 | + Reg::i16() |
| 88 | + } else if bits <= 32 { |
| 89 | + Reg::i32() |
147 | 90 | } else { |
148 | | - Type::array(&Type::i64(ccx), ((size + 7 ) / 8 ) as u64) |
| 91 | + Reg::i64() |
149 | 92 | }; |
150 | | - arg.cast = Some(llty); |
| 93 | + |
| 94 | + arg.cast_to(ccx, Uniform { |
| 95 | + unit, |
| 96 | + total: size |
| 97 | + }); |
151 | 98 | return; |
152 | 99 | } |
153 | 100 | arg.make_indirect(ccx); |
154 | 101 | } |
155 | 102 |
|
156 | | -fn is_reg_ty(ty: Type) -> bool { |
157 | | - match ty.kind() { |
158 | | - Integer |
159 | | - | Pointer |
160 | | - | Float |
161 | | - | Double |
162 | | - | Vector => true, |
163 | | - _ => false |
164 | | - } |
165 | | -} |
166 | | - |
167 | | -pub fn compute_abi_info(ccx: &CrateContext, fty: &mut FnType) { |
| 103 | +pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fty: &mut FnType<'tcx>) { |
168 | 104 | if !fty.ret.is_ignore() { |
169 | 105 | classify_ret_ty(ccx, &mut fty.ret); |
170 | 106 | } |
|
0 commit comments