11//! Helper trait for generic float types.
22
3+ use core:: f64;
4+
35use crate :: fmt:: { Debug , LowerExp } ;
46use crate :: num:: FpCategory ;
5- use crate :: ops:: { Add , Div , Mul , Neg } ;
7+ use crate :: ops:: { self , Add , Div , Mul , Neg } ;
8+
9+ pub trait CastInto < T : Copy > : Copy {
10+ fn cast ( self ) -> T ;
11+ }
12+
13+ pub trait Integer :
14+ Sized
15+ + Clone
16+ + Copy
17+ + Debug
18+ + ops:: Shr < u32 , Output = Self >
19+ + ops:: Shl < u32 , Output = Self >
20+ + ops:: BitAnd < Output = Self >
21+ + ops:: BitOr < Output = Self >
22+ + PartialEq
23+ + CastInto < i16 >
24+ {
25+ const ZERO : Self ;
26+ const ONE : Self ;
27+ }
628
7- /// A helper trait to avoid duplicating basically all the conversion code for `f32` and `f64`.
29+ macro_rules! int {
30+ ( $( $ty: ty) ,+) => {
31+ $(
32+ impl CastInto <i16 > for $ty {
33+ fn cast( self ) -> i16 {
34+ self as i16
35+ }
36+ }
37+
38+
39+ impl Integer for $ty {
40+ const ZERO : Self = 0 ;
41+ const ONE : Self = 1 ;
42+ }
43+ ) +
44+ }
45+ }
46+
47+ int ! ( u16 , u32 , u64 ) ;
48+
49+ /// A helper trait to avoid duplicating basically all the conversion code for IEEE floats.
850///
951/// See the parent module's doc comment for why this is necessary.
1052///
11- /// Should **never ever** be implemented for other types or be used outside the dec2flt module.
53+ /// Should **never ever** be implemented for other types or be used outside the ` dec2flt` module.
1254#[ doc( hidden) ]
1355pub trait RawFloat :
1456 Sized
@@ -24,62 +66,93 @@ pub trait RawFloat:
2466 + Copy
2567 + Debug
2668{
69+ /// The unsigned integer with the same size as the float
70+ type Int : Integer + Into < u64 > ;
71+
72+ /* general constants */
73+
2774 const INFINITY : Self ;
2875 const NEG_INFINITY : Self ;
2976 const NAN : Self ;
3077 const NEG_NAN : Self ;
3178
79+ /// Bit width of the float
80+ const BITS : u32 ;
81+
82+ /// Mantissa digits including the hidden bit (provided by core)
83+ const MANTISSA_BITS : u32 ;
84+
85+ const EXPONENT_MASK : Self :: Int ;
86+ const MANTISSA_MASK : Self :: Int ;
87+
3288 /// The number of bits in the significand, *excluding* the hidden bit.
33- const MANTISSA_EXPLICIT_BITS : usize ;
34-
35- // Round-to-even only happens for negative values of q
36- // when q ≥ −4 in the 64-bit case and when q ≥ −17 in
37- // the 32-bitcase.
38- //
39- // When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we
40- // have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have
41- // 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10.
42- //
43- // When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64
44- // so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case)
45- // or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64
46- // (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11
47- // or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase).
48- //
49- // Thus we have that we only need to round ties to even when
50- // we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10]
51- // (in the 32-bit case). In both cases,the power of five(5^|q|)
52- // fits in a 64-bit word.
89+ const MANTISSA_EXPLICIT_BITS : u32 = Self :: MANTISSA_BITS - 1 ;
90+
91+ /// Bits for the exponent
92+ const EXPONENT_BITS : u32 = Self :: BITS - Self :: MANTISSA_EXPLICIT_BITS - 1 ;
93+
94+ /// Minimum exponent value `-(1 << (EXP_BITS - 1)) + 1`.
95+ const MINIMUM_EXPONENT : i32 = -( 1 << ( Self :: EXPONENT_BITS - 1 ) ) + 1 ;
96+
97+ /// Maximum exponent without overflowing to infinity
98+ const MAXIMUM_EXPONENT : u32 = ( 1 << Self :: EXPONENT_BITS ) - 1 ;
99+
100+ /// The exponent bias value
101+ const EXPONENT_BIAS : u32 = Self :: MAXIMUM_EXPONENT >> 1 ;
102+
103+ /// Largest exponent value `(1 << EXP_BITS) - 1`.
104+ const INFINITE_POWER : i32 = ( 1 << Self :: EXPONENT_BITS ) - 1 ;
105+
106+ /// Round-to-even only happens for negative values of q
107+ /// when q ≥ −4 in the 64-bit case and when q ≥ −17 in
108+ /// the 32-bitcase.
109+ ///
110+ /// When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we
111+ /// have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have
112+ /// 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10.
113+ ///
114+ /// When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64
115+ /// so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case)
116+ /// or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64
117+ /// (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11
118+ /// or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase).
119+ ///
120+ /// Thus we have that we only need to round ties to even when
121+ /// we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10]
122+ /// (in the 32-bit case). In both cases,the power of five(5^|q|)
123+ /// fits in a 64-bit word.
53124 const MIN_EXPONENT_ROUND_TO_EVEN : i32 ;
54125 const MAX_EXPONENT_ROUND_TO_EVEN : i32 ;
55126
56- // Minimum exponent that for a fast path case, or `-⌊(MANTISSA_EXPLICIT_BITS+1)/log2(5)⌋`
57- const MIN_EXPONENT_FAST_PATH : i64 ;
58-
59- // Maximum exponent that for a fast path case, or `⌊(MANTISSA_EXPLICIT_BITS+1)/log2(5)⌋`
60- const MAX_EXPONENT_FAST_PATH : i64 ;
127+ /// Largest decimal exponent for a non-infinite value.
128+ ///
129+ /// This is the max exponent in binary converted to the max exponent in decimal. Allows fast
130+ /// pathing anything larger than `10^LARGEST_POWER_OF_TEN`, which will round to infinity.
131+ const LARGEST_POWER_OF_TEN : i32 =
132+ ( ( Self :: EXPONENT_BIAS as f64 + 1.0 ) / f64:: consts:: LOG2_10 ) as i32 ;
61133
62- // Maximum exponent that can be represented for a disguised-fast path case.
63- // This is `MAX_EXPONENT_FAST_PATH + ⌊(MANTISSA_EXPLICIT_BITS+1)/log2(10)⌋`
64- const MAX_EXPONENT_DISGUISED_FAST_PATH : i64 ;
134+ /// Smallest decimal exponent for a non-zero value. This allows for fast pathing anything
135+ /// smaller than `10^SMALLEST_POWER_OF_TEN`.
136+ const SMALLEST_POWER_OF_TEN : i32 =
137+ -( ( ( Self :: EXPONENT_BIAS + Self :: MANTISSA_BITS + 64 ) as f64 ) / f64:: consts:: LOG2_10 ) as i32 ;
65138
66- // Minimum exponent value `-(1 << (EXP_BITS - 1)) + 1`.
67- const MINIMUM_EXPONENT : i32 ;
139+ /* Fast pathing */
68140
69- // Largest exponent value `(1 << EXP_BITS) - 1`.
70- const INFINITE_POWER : i32 ;
141+ /// Maximum exponent for a fast path case, or `⌊(MANTISSA_EXPLICIT_BITS+1)/log2(5)⌋`
142+ // assuming FLT_EVAL_METHOD = 0
143+ const MAX_EXPONENT_FAST_PATH : i64 =
144+ ( ( Self :: MANTISSA_BITS as f64 ) / ( f64:: consts:: LOG2_10 - 1.0 ) ) as i64 ;
71145
72- // Index (in bits) of the sign.
73- const SIGN_INDEX : usize ;
146+ /// Minimum exponent for a fast path case, or `-⌊(MANTISSA_EXPLICIT_BITS+1)/log2(5)⌋`
147+ const MIN_EXPONENT_FAST_PATH : i64 = - Self :: MAX_EXPONENT_FAST_PATH ;
74148
75- // Smallest decimal exponent for a non-zero value.
76- const SMALLEST_POWER_OF_TEN : i32 ;
149+ /// Maximum exponent that can be represented for a disguised-fast path case.
150+ /// This is `MAX_EXPONENT_FAST_PATH + ⌊(MANTISSA_EXPLICIT_BITS+1)/log2(10)⌋`
151+ const MAX_EXPONENT_DISGUISED_FAST_PATH : i64 =
152+ Self :: MAX_EXPONENT_FAST_PATH + ( Self :: MANTISSA_BITS as f64 / f64:: consts:: LOG2_10 ) as i64 ;
77153
78- // Largest decimal exponent for a non-infinite value.
79- const LARGEST_POWER_OF_TEN : i32 ;
80-
81- // Maximum mantissa for the fast-path (`1 << 53` for f64).
82- const MAX_MANTISSA_FAST_PATH : u64 = 2_u64 << Self :: MANTISSA_EXPLICIT_BITS ;
154+ /// Maximum mantissa for the fast-path (`1 << 53` for f64).
155+ const MAX_MANTISSA_FAST_PATH : u64 = 1 << Self :: MANTISSA_BITS ;
83156
84157 /// Converts integer into float through an as cast.
85158 /// This is only called in the fast-path algorithm, and therefore
@@ -96,27 +169,45 @@ pub trait RawFloat:
96169 /// Returns the category that this number falls into.
97170 fn classify ( self ) -> FpCategory ;
98171
172+ /// Transmute to the integer representation
173+ fn to_bits ( self ) -> Self :: Int ;
174+
99175 /// Returns the mantissa, exponent and sign as integers.
100- fn integer_decode ( self ) -> ( u64 , i16 , i8 ) ;
176+ ///
177+ /// That is, this returns `(m, p, s)` such that `s * m * 2^p` represents the original float.
178+ /// For 0, the exponent will be `-(EXPONENT_BIAS + MANTISSA_EXPLICIT_BITS`, which is the
179+ /// minimum subnormal power.
180+ fn integer_decode ( self ) -> ( u64 , i16 , i8 ) {
181+ let bits = self . to_bits ( ) ;
182+ let sign: i8 = if bits >> ( Self :: BITS - 1 ) == Self :: Int :: ZERO { 1 } else { -1 } ;
183+ let mut exponent: i16 =
184+ ( ( bits & Self :: EXPONENT_MASK ) >> Self :: MANTISSA_EXPLICIT_BITS ) . cast ( ) ;
185+ let mantissa = if exponent == 0 {
186+ ( bits & Self :: MANTISSA_MASK ) << 1
187+ } else {
188+ ( bits & Self :: MANTISSA_MASK ) | ( Self :: Int :: ONE << Self :: MANTISSA_EXPLICIT_BITS )
189+ } ;
190+ // Exponent bias + mantissa shift
191+ exponent -= ( Self :: EXPONENT_BIAS + Self :: MANTISSA_EXPLICIT_BITS ) as i16 ;
192+ ( mantissa. into ( ) , exponent, sign)
193+ }
101194}
102195
103196impl RawFloat for f32 {
197+ type Int = u32 ;
198+
104199 const INFINITY : Self = f32:: INFINITY ;
105200 const NEG_INFINITY : Self = f32:: NEG_INFINITY ;
106201 const NAN : Self = f32:: NAN ;
107202 const NEG_NAN : Self = -f32:: NAN ;
108203
109- const MANTISSA_EXPLICIT_BITS : usize = 23 ;
204+ const BITS : u32 = 32 ;
205+ const MANTISSA_BITS : u32 = Self :: MANTISSA_DIGITS ;
206+ const EXPONENT_MASK : Self :: Int = Self :: EXP_MASK ;
207+ const MANTISSA_MASK : Self :: Int = Self :: MAN_MASK ;
208+
110209 const MIN_EXPONENT_ROUND_TO_EVEN : i32 = -17 ;
111210 const MAX_EXPONENT_ROUND_TO_EVEN : i32 = 10 ;
112- const MIN_EXPONENT_FAST_PATH : i64 = -10 ; // assuming FLT_EVAL_METHOD = 0
113- const MAX_EXPONENT_FAST_PATH : i64 = 10 ;
114- const MAX_EXPONENT_DISGUISED_FAST_PATH : i64 = 17 ;
115- const MINIMUM_EXPONENT : i32 = -127 ;
116- const INFINITE_POWER : i32 = 0xFF ;
117- const SIGN_INDEX : usize = 31 ;
118- const SMALLEST_POWER_OF_TEN : i32 = -65 ;
119- const LARGEST_POWER_OF_TEN : i32 = 38 ;
120211
121212 #[ inline]
122213 fn from_u64 ( v : u64 ) -> Self {
@@ -136,16 +227,8 @@ impl RawFloat for f32 {
136227 TABLE [ exponent & 15 ]
137228 }
138229
139- /// Returns the mantissa, exponent and sign as integers.
140- fn integer_decode ( self ) -> ( u64 , i16 , i8 ) {
141- let bits = self . to_bits ( ) ;
142- let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 } ;
143- let mut exponent: i16 = ( ( bits >> 23 ) & 0xff ) as i16 ;
144- let mantissa =
145- if exponent == 0 { ( bits & 0x7fffff ) << 1 } else { ( bits & 0x7fffff ) | 0x800000 } ;
146- // Exponent bias + mantissa shift
147- exponent -= 127 + 23 ;
148- ( mantissa as u64 , exponent, sign)
230+ fn to_bits ( self ) -> Self :: Int {
231+ self . to_bits ( )
149232 }
150233
151234 fn classify ( self ) -> FpCategory {
@@ -154,22 +237,20 @@ impl RawFloat for f32 {
154237}
155238
156239impl RawFloat for f64 {
157- const INFINITY : Self = f64:: INFINITY ;
158- const NEG_INFINITY : Self = f64:: NEG_INFINITY ;
159- const NAN : Self = f64:: NAN ;
160- const NEG_NAN : Self = -f64:: NAN ;
240+ type Int = u64 ;
241+
242+ const INFINITY : Self = Self :: INFINITY ;
243+ const NEG_INFINITY : Self = Self :: NEG_INFINITY ;
244+ const NAN : Self = Self :: NAN ;
245+ const NEG_NAN : Self = -Self :: NAN ;
246+
247+ const BITS : u32 = 64 ;
248+ const MANTISSA_BITS : u32 = Self :: MANTISSA_DIGITS ;
249+ const EXPONENT_MASK : Self :: Int = Self :: EXP_MASK ;
250+ const MANTISSA_MASK : Self :: Int = Self :: MAN_MASK ;
161251
162- const MANTISSA_EXPLICIT_BITS : usize = 52 ;
163252 const MIN_EXPONENT_ROUND_TO_EVEN : i32 = -4 ;
164253 const MAX_EXPONENT_ROUND_TO_EVEN : i32 = 23 ;
165- const MIN_EXPONENT_FAST_PATH : i64 = -22 ; // assuming FLT_EVAL_METHOD = 0
166- const MAX_EXPONENT_FAST_PATH : i64 = 22 ;
167- const MAX_EXPONENT_DISGUISED_FAST_PATH : i64 = 37 ;
168- const MINIMUM_EXPONENT : i32 = -1023 ;
169- const INFINITE_POWER : i32 = 0x7FF ;
170- const SIGN_INDEX : usize = 63 ;
171- const SMALLEST_POWER_OF_TEN : i32 = -342 ;
172- const LARGEST_POWER_OF_TEN : i32 = 308 ;
173254
174255 #[ inline]
175256 fn from_u64 ( v : u64 ) -> Self {
@@ -190,19 +271,8 @@ impl RawFloat for f64 {
190271 TABLE [ exponent & 31 ]
191272 }
192273
193- /// Returns the mantissa, exponent and sign as integers.
194- fn integer_decode ( self ) -> ( u64 , i16 , i8 ) {
195- let bits = self . to_bits ( ) ;
196- let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 } ;
197- let mut exponent: i16 = ( ( bits >> 52 ) & 0x7ff ) as i16 ;
198- let mantissa = if exponent == 0 {
199- ( bits & 0xfffffffffffff ) << 1
200- } else {
201- ( bits & 0xfffffffffffff ) | 0x10000000000000
202- } ;
203- // Exponent bias + mantissa shift
204- exponent -= 1023 + 52 ;
205- ( mantissa, exponent, sign)
274+ fn to_bits ( self ) -> Self :: Int {
275+ self . to_bits ( )
206276 }
207277
208278 fn classify ( self ) -> FpCategory {
0 commit comments