22
33use crate :: fmt:: { Debug , LowerExp } ;
44use crate :: num:: FpCategory ;
5- use crate :: ops:: { Add , Div , Mul , Neg } ;
5+ use crate :: ops:: { self , Add , Div , Mul , Neg } ;
66
7- /// A helper trait to avoid duplicating basically all the conversion code for `f32` and `f64`.
7+ /// Lossy `as` casting between two types.
8+ pub trait CastInto < T : Copy > : Copy {
9+ fn cast ( self ) -> T ;
10+ }
11+
12+ /// Collection of traits that allow us to be generic over integer size.
13+ pub trait Integer :
14+ Sized
15+ + Clone
16+ + Copy
17+ + Debug
18+ + ops:: Shr < u32 , Output = Self >
19+ + ops:: Shl < u32 , Output = Self >
20+ + ops:: BitAnd < Output = Self >
21+ + ops:: BitOr < Output = Self >
22+ + PartialEq
23+ + CastInto < i16 >
24+ {
25+ const ZERO : Self ;
26+ const ONE : Self ;
27+ }
28+
29+ macro_rules! int {
30+ ( $( $ty: ty) ,+) => {
31+ $(
32+ impl CastInto <i16 > for $ty {
33+ fn cast( self ) -> i16 {
34+ self as i16
35+ }
36+ }
37+
38+ impl Integer for $ty {
39+ const ZERO : Self = 0 ;
40+ const ONE : Self = 1 ;
41+ }
42+ ) +
43+ }
44+ }
45+
46+ int ! ( u32 , u64 ) ;
47+
48+ /// A helper trait to avoid duplicating basically all the conversion code for IEEE floats.
849///
950/// See the parent module's doc comment for why this is necessary.
1051///
11- /// Should **never ever** be implemented for other types or be used outside the dec2flt module.
52+ /// Should **never ever** be implemented for other types or be used outside the ` dec2flt` module.
1253#[ doc( hidden) ]
1354pub trait RawFloat :
1455 Sized
@@ -24,62 +65,93 @@ pub trait RawFloat:
2465 + Copy
2566 + Debug
2667{
68+ /// The unsigned integer with the same size as the float
69+ type Int : Integer + Into < u64 > ;
70+
71+ /* general constants */
72+
2773 const INFINITY : Self ;
2874 const NEG_INFINITY : Self ;
2975 const NAN : Self ;
3076 const NEG_NAN : Self ;
3177
78+ /// Bit width of the float
79+ const BITS : u32 ;
80+
81+ /// Mantissa digits including the hidden bit (provided by core)
82+ const MANTISSA_BITS : u32 ;
83+
84+ const EXPONENT_MASK : Self :: Int ;
85+ const MANTISSA_MASK : Self :: Int ;
86+
3287 /// The number of bits in the significand, *excluding* the hidden bit.
33- const MANTISSA_EXPLICIT_BITS : usize ;
34-
35- // Round-to-even only happens for negative values of q
36- // when q ≥ −4 in the 64-bit case and when q ≥ −17 in
37- // the 32-bitcase.
38- //
39- // When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we
40- // have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have
41- // 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10.
42- //
43- // When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64
44- // so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case)
45- // or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64
46- // (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11
47- // or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase).
48- //
49- // Thus we have that we only need to round ties to even when
50- // we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10]
51- // (in the 32-bit case). In both cases,the power of five(5^|q|)
52- // fits in a 64-bit word.
88+ const MANTISSA_EXPLICIT_BITS : u32 = Self :: MANTISSA_BITS - 1 ;
89+
90+ /// Bits for the exponent
91+ const EXPONENT_BITS : u32 = Self :: BITS - Self :: MANTISSA_EXPLICIT_BITS - 1 ;
92+
93+ /// Minimum exponent value `-(1 << (EXP_BITS - 1)) + 1`.
94+ const MINIMUM_EXPONENT : i32 = -( 1 << ( Self :: EXPONENT_BITS - 1 ) ) + 1 ;
95+
96+ /// Maximum exponent without overflowing to infinity
97+ const MAXIMUM_EXPONENT : u32 = ( 1 << Self :: EXPONENT_BITS ) - 1 ;
98+
99+ /// The exponent bias value
100+ const EXPONENT_BIAS : u32 = Self :: MAXIMUM_EXPONENT >> 1 ;
101+
102+ /// Largest exponent value `(1 << EXP_BITS) - 1`.
103+ const INFINITE_POWER : i32 = ( 1 << Self :: EXPONENT_BITS ) - 1 ;
104+
105+ /// Round-to-even only happens for negative values of q
106+ /// when q ≥ −4 in the 64-bit case and when q ≥ −17 in
107+ /// the 32-bitcase.
108+ ///
109+ /// When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we
110+ /// have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have
111+ /// 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10.
112+ ///
113+ /// When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64
114+ /// so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case)
115+ /// or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64
116+ /// (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11
117+ /// or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase).
118+ ///
119+ /// Thus we have that we only need to round ties to even when
120+ /// we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10]
121+ /// (in the 32-bit case). In both cases,the power of five(5^|q|)
122+ /// fits in a 64-bit word.
53123 const MIN_EXPONENT_ROUND_TO_EVEN : i32 ;
54124 const MAX_EXPONENT_ROUND_TO_EVEN : i32 ;
55125
56- // Minimum exponent that for a fast path case, or `-⌊(MANTISSA_EXPLICIT_BITS+1)/log2(5)⌋`
57- const MIN_EXPONENT_FAST_PATH : i64 ;
58-
59- // Maximum exponent that for a fast path case, or `⌊(MANTISSA_EXPLICIT_BITS+1)/log2(5)⌋`
60- const MAX_EXPONENT_FAST_PATH : i64 ;
126+ /* limits related to Fast pathing */
61127
62- // Maximum exponent that can be represented for a disguised-fast path case.
63- // This is `MAX_EXPONENT_FAST_PATH + ⌊(MANTISSA_EXPLICIT_BITS+1)/log2(10)⌋`
64- const MAX_EXPONENT_DISGUISED_FAST_PATH : i64 ;
128+ /// Largest decimal exponent for a non-infinite value.
129+ ///
130+ /// This is the max exponent in binary converted to the max exponent in decimal. Allows fast
131+ /// pathing anything larger than `10^LARGEST_POWER_OF_TEN`, which will round to infinity.
132+ const LARGEST_POWER_OF_TEN : i32 =
133+ ( ( Self :: EXPONENT_BIAS as f64 + 1.0 ) / f64:: consts:: LOG2_10 ) as i32 ;
65134
66- // Minimum exponent value `-(1 << (EXP_BITS - 1)) + 1`.
67- const MINIMUM_EXPONENT : i32 ;
135+ /// Smallest decimal exponent for a non-zero value. This allows for fast pathing anything
136+ /// smaller than `10^SMALLEST_POWER_OF_TEN`, which will round to zero.
137+ const SMALLEST_POWER_OF_TEN : i32 =
138+ -( ( ( Self :: EXPONENT_BIAS + Self :: MANTISSA_BITS + 64 ) as f64 ) / f64:: consts:: LOG2_10 ) as i32 ;
68139
69- // Largest exponent value `(1 << EXP_BITS) - 1`.
70- const INFINITE_POWER : i32 ;
140+ /// Maximum exponent for a fast path case, or `⌊(MANTISSA_EXPLICIT_BITS+1)/log2(5)⌋`
141+ // assuming FLT_EVAL_METHOD = 0
142+ const MAX_EXPONENT_FAST_PATH : i64 =
143+ ( ( Self :: MANTISSA_BITS as f64 ) / ( f64:: consts:: LOG2_10 - 1.0 ) ) as i64 ;
71144
72- // Index (in bits) of the sign.
73- const SIGN_INDEX : usize ;
145+ /// Minimum exponent for a fast path case, or `-⌊(MANTISSA_EXPLICIT_BITS+1)/log2(5)⌋`
146+ const MIN_EXPONENT_FAST_PATH : i64 = - Self :: MAX_EXPONENT_FAST_PATH ;
74147
75- // Smallest decimal exponent for a non-zero value.
76- const SMALLEST_POWER_OF_TEN : i32 ;
148+ /// Maximum exponent that can be represented for a disguised-fast path case.
149+ /// This is `MAX_EXPONENT_FAST_PATH + ⌊(MANTISSA_EXPLICIT_BITS+1)/log2(10)⌋`
150+ const MAX_EXPONENT_DISGUISED_FAST_PATH : i64 =
151+ Self :: MAX_EXPONENT_FAST_PATH + ( Self :: MANTISSA_BITS as f64 / f64:: consts:: LOG2_10 ) as i64 ;
77152
78- // Largest decimal exponent for a non-infinite value.
79- const LARGEST_POWER_OF_TEN : i32 ;
80-
81- // Maximum mantissa for the fast-path (`1 << 53` for f64).
82- const MAX_MANTISSA_FAST_PATH : u64 = 2_u64 << Self :: MANTISSA_EXPLICIT_BITS ;
153+ /// Maximum mantissa for the fast-path (`1 << 53` for f64).
154+ const MAX_MANTISSA_FAST_PATH : u64 = 1 << Self :: MANTISSA_BITS ;
83155
84156 /// Converts integer into float through an as cast.
85157 /// This is only called in the fast-path algorithm, and therefore
@@ -96,27 +168,45 @@ pub trait RawFloat:
96168 /// Returns the category that this number falls into.
97169 fn classify ( self ) -> FpCategory ;
98170
171+ /// Transmute to the integer representation
172+ fn to_bits ( self ) -> Self :: Int ;
173+
99174 /// Returns the mantissa, exponent and sign as integers.
100- fn integer_decode ( self ) -> ( u64 , i16 , i8 ) ;
175+ ///
176+ /// That is, this returns `(m, p, s)` such that `s * m * 2^p` represents the original float.
177+ /// For 0, the exponent will be `-(EXPONENT_BIAS + MANTISSA_EXPLICIT_BITS`, which is the
178+ /// minimum subnormal power.
179+ fn integer_decode ( self ) -> ( u64 , i16 , i8 ) {
180+ let bits = self . to_bits ( ) ;
181+ let sign: i8 = if bits >> ( Self :: BITS - 1 ) == Self :: Int :: ZERO { 1 } else { -1 } ;
182+ let mut exponent: i16 =
183+ ( ( bits & Self :: EXPONENT_MASK ) >> Self :: MANTISSA_EXPLICIT_BITS ) . cast ( ) ;
184+ let mantissa = if exponent == 0 {
185+ ( bits & Self :: MANTISSA_MASK ) << 1
186+ } else {
187+ ( bits & Self :: MANTISSA_MASK ) | ( Self :: Int :: ONE << Self :: MANTISSA_EXPLICIT_BITS )
188+ } ;
189+ // Exponent bias + mantissa shift
190+ exponent -= ( Self :: EXPONENT_BIAS + Self :: MANTISSA_EXPLICIT_BITS ) as i16 ;
191+ ( mantissa. into ( ) , exponent, sign)
192+ }
101193}
102194
103195impl RawFloat for f32 {
196+ type Int = u32 ;
197+
104198 const INFINITY : Self = f32:: INFINITY ;
105199 const NEG_INFINITY : Self = f32:: NEG_INFINITY ;
106200 const NAN : Self = f32:: NAN ;
107201 const NEG_NAN : Self = -f32:: NAN ;
108202
109- const MANTISSA_EXPLICIT_BITS : usize = 23 ;
203+ const BITS : u32 = 32 ;
204+ const MANTISSA_BITS : u32 = Self :: MANTISSA_DIGITS ;
205+ const EXPONENT_MASK : Self :: Int = Self :: EXP_MASK ;
206+ const MANTISSA_MASK : Self :: Int = Self :: MAN_MASK ;
207+
110208 const MIN_EXPONENT_ROUND_TO_EVEN : i32 = -17 ;
111209 const MAX_EXPONENT_ROUND_TO_EVEN : i32 = 10 ;
112- const MIN_EXPONENT_FAST_PATH : i64 = -10 ; // assuming FLT_EVAL_METHOD = 0
113- const MAX_EXPONENT_FAST_PATH : i64 = 10 ;
114- const MAX_EXPONENT_DISGUISED_FAST_PATH : i64 = 17 ;
115- const MINIMUM_EXPONENT : i32 = -127 ;
116- const INFINITE_POWER : i32 = 0xFF ;
117- const SIGN_INDEX : usize = 31 ;
118- const SMALLEST_POWER_OF_TEN : i32 = -65 ;
119- const LARGEST_POWER_OF_TEN : i32 = 38 ;
120210
121211 #[ inline]
122212 fn from_u64 ( v : u64 ) -> Self {
@@ -136,16 +226,8 @@ impl RawFloat for f32 {
136226 TABLE [ exponent & 15 ]
137227 }
138228
139- /// Returns the mantissa, exponent and sign as integers.
140- fn integer_decode ( self ) -> ( u64 , i16 , i8 ) {
141- let bits = self . to_bits ( ) ;
142- let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 } ;
143- let mut exponent: i16 = ( ( bits >> 23 ) & 0xff ) as i16 ;
144- let mantissa =
145- if exponent == 0 { ( bits & 0x7fffff ) << 1 } else { ( bits & 0x7fffff ) | 0x800000 } ;
146- // Exponent bias + mantissa shift
147- exponent -= 127 + 23 ;
148- ( mantissa as u64 , exponent, sign)
229+ fn to_bits ( self ) -> Self :: Int {
230+ self . to_bits ( )
149231 }
150232
151233 fn classify ( self ) -> FpCategory {
@@ -154,22 +236,20 @@ impl RawFloat for f32 {
154236}
155237
156238impl RawFloat for f64 {
157- const INFINITY : Self = f64:: INFINITY ;
158- const NEG_INFINITY : Self = f64:: NEG_INFINITY ;
159- const NAN : Self = f64:: NAN ;
160- const NEG_NAN : Self = -f64:: NAN ;
239+ type Int = u64 ;
240+
241+ const INFINITY : Self = Self :: INFINITY ;
242+ const NEG_INFINITY : Self = Self :: NEG_INFINITY ;
243+ const NAN : Self = Self :: NAN ;
244+ const NEG_NAN : Self = -Self :: NAN ;
245+
246+ const BITS : u32 = 64 ;
247+ const MANTISSA_BITS : u32 = Self :: MANTISSA_DIGITS ;
248+ const EXPONENT_MASK : Self :: Int = Self :: EXP_MASK ;
249+ const MANTISSA_MASK : Self :: Int = Self :: MAN_MASK ;
161250
162- const MANTISSA_EXPLICIT_BITS : usize = 52 ;
163251 const MIN_EXPONENT_ROUND_TO_EVEN : i32 = -4 ;
164252 const MAX_EXPONENT_ROUND_TO_EVEN : i32 = 23 ;
165- const MIN_EXPONENT_FAST_PATH : i64 = -22 ; // assuming FLT_EVAL_METHOD = 0
166- const MAX_EXPONENT_FAST_PATH : i64 = 22 ;
167- const MAX_EXPONENT_DISGUISED_FAST_PATH : i64 = 37 ;
168- const MINIMUM_EXPONENT : i32 = -1023 ;
169- const INFINITE_POWER : i32 = 0x7FF ;
170- const SIGN_INDEX : usize = 63 ;
171- const SMALLEST_POWER_OF_TEN : i32 = -342 ;
172- const LARGEST_POWER_OF_TEN : i32 = 308 ;
173253
174254 #[ inline]
175255 fn from_u64 ( v : u64 ) -> Self {
@@ -190,19 +270,8 @@ impl RawFloat for f64 {
190270 TABLE [ exponent & 31 ]
191271 }
192272
193- /// Returns the mantissa, exponent and sign as integers.
194- fn integer_decode ( self ) -> ( u64 , i16 , i8 ) {
195- let bits = self . to_bits ( ) ;
196- let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 } ;
197- let mut exponent: i16 = ( ( bits >> 52 ) & 0x7ff ) as i16 ;
198- let mantissa = if exponent == 0 {
199- ( bits & 0xfffffffffffff ) << 1
200- } else {
201- ( bits & 0xfffffffffffff ) | 0x10000000000000
202- } ;
203- // Exponent bias + mantissa shift
204- exponent -= 1023 + 52 ;
205- ( mantissa, exponent, sign)
273+ fn to_bits ( self ) -> Self :: Int {
274+ self . to_bits ( )
206275 }
207276
208277 fn classify ( self ) -> FpCategory {
0 commit comments