@@ -1166,16 +1166,20 @@ pub unsafe fn write_volatile<T>(dst: *mut T, src: T) {
11661166/// Any questions go to @nagisa.
11671167#[ lang = "align_offset" ]
11681168pub ( crate ) unsafe fn align_offset < T : Sized > ( p : * const T , a : usize ) -> usize {
1169+ // FIXME(#75598): Direct use of these intrinsics improves codegen significantly at opt-level <=
1170+ // 1, where the method versions of these operations are not inlined.
1171+ use intrinsics:: { unchecked_shl, unchecked_shr, unchecked_sub, wrapping_mul, wrapping_sub} ;
1172+
11691173 /// Calculate multiplicative modular inverse of `x` modulo `m`.
11701174 ///
1171- /// This implementation is tailored for align_offset and has following preconditions:
1175+ /// This implementation is tailored for ` align_offset` and has following preconditions:
11721176 ///
11731177 /// * `m` is a power-of-two;
11741178 /// * `x < m`; (if `x ≥ m`, pass in `x % m` instead)
11751179 ///
11761180 /// Implementation of this function shall not panic. Ever.
11771181 #[ inline]
1178- fn mod_inv ( x : usize , m : usize ) -> usize {
1182+ unsafe fn mod_inv ( x : usize , m : usize ) -> usize {
11791183 /// Multiplicative modular inverse table modulo 2⁴ = 16.
11801184 ///
11811185 /// Note, that this table does not contain values where inverse does not exist (i.e., for
@@ -1187,8 +1191,10 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
11871191 const INV_TABLE_MOD_SQUARED : usize = INV_TABLE_MOD * INV_TABLE_MOD ;
11881192
11891193 let table_inverse = INV_TABLE_MOD_16 [ ( x & ( INV_TABLE_MOD - 1 ) ) >> 1 ] as usize ;
1194+ // SAFETY: `m` is required to be a power-of-two, hence non-zero.
1195+ let m_minus_one = unsafe { unchecked_sub ( m, 1 ) } ;
11901196 if m <= INV_TABLE_MOD {
1191- table_inverse & ( m - 1 )
1197+ table_inverse & m_minus_one
11921198 } else {
11931199 // We iterate "up" using the following formula:
11941200 //
@@ -1204,49 +1210,50 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
12041210 // uses e.g., subtraction `mod n`. It is entirely fine to do them `mod
12051211 // usize::MAX` instead, because we take the result `mod n` at the end
12061212 // anyway.
1207- inverse = inverse . wrapping_mul ( 2usize . wrapping_sub ( x . wrapping_mul ( inverse) ) ) ;
1213+ inverse = wrapping_mul ( inverse , wrapping_sub ( 2usize , wrapping_mul ( x , inverse) ) ) ;
12081214 if going_mod >= m {
1209- return inverse & ( m - 1 ) ;
1215+ return inverse & m_minus_one ;
12101216 }
1211- going_mod = going_mod . wrapping_mul ( going_mod) ;
1217+ going_mod = wrapping_mul ( going_mod , going_mod) ;
12121218 }
12131219 }
12141220 }
12151221
12161222 let stride = mem:: size_of :: < T > ( ) ;
1217- let a_minus_one = a. wrapping_sub ( 1 ) ;
1218- let pmoda = p as usize & a_minus_one;
1223+ // SAFETY: `a` is a power-of-two, therefore non-zero.
1224+ let a_minus_one = unsafe { unchecked_sub ( a, 1 ) } ;
1225+ if stride == 1 {
1226+ // `stride == 1` case can be computed more efficiently through `-p (mod a)`.
1227+ return wrapping_sub ( 0 , p as usize ) & a_minus_one;
1228+ }
12191229
1230+ let pmoda = p as usize & a_minus_one;
12201231 if pmoda == 0 {
12211232 // Already aligned. Yay!
12221233 return 0 ;
1223- }
1224-
1225- if stride <= 1 {
1226- return if stride == 0 {
1227- // If the pointer is not aligned, and the element is zero-sized, then no amount of
1228- // elements will ever align the pointer.
1229- !0
1230- } else {
1231- a. wrapping_sub ( pmoda)
1232- } ;
1234+ } else if stride == 0 {
1235+ // If the pointer is not aligned, and the element is zero-sized, then no amount of
1236+ // elements will ever align the pointer.
1237+ return usize:: MAX ;
12331238 }
12341239
12351240 let smoda = stride & a_minus_one;
1236- // SAFETY: a is power-of-two so cannot be 0 . stride = 0 is handled above.
1241+ // SAFETY: a is power-of-two hence non-zero . stride == 0 case is handled above.
12371242 let gcdpow = unsafe { intrinsics:: cttz_nonzero ( stride) . min ( intrinsics:: cttz_nonzero ( a) ) } ;
1238- let gcd = 1usize << gcdpow;
1243+ // SAFETY: gcdpow has an upper-bound that’s at most the number of bits in an usize.
1244+ let gcd = unsafe { unchecked_shl ( 1usize , gcdpow) } ;
12391245
1240- if p as usize & ( gcd. wrapping_sub ( 1 ) ) == 0 {
1246+ // SAFETY: gcd is always greater or equal to 1.
1247+ if p as usize & unsafe { unchecked_sub ( gcd, 1 ) } == 0 {
12411248 // This branch solves for the following linear congruence equation:
12421249 //
12431250 // ` p + so = 0 mod a `
12441251 //
12451252 // `p` here is the pointer value, `s` - stride of `T`, `o` offset in `T`s, and `a` - the
12461253 // requested alignment.
12471254 //
1248- // With `g = gcd(a, s)`, and the above asserting that `p` is also divisible by `g`, we can
1249- // denote `a' = a/g`, `s' = s/g`, `p' = p/g`, then this becomes equivalent to:
1255+ // With `g = gcd(a, s)`, and the above condition asserting that `p` is also divisible by
1256+ // `g`, we can denote `a' = a/g`, `s' = s/g`, `p' = p/g`, then this becomes equivalent to:
12501257 //
12511258 // ` p' + s'o = 0 mod a' `
12521259 // ` o = (a' - (p' mod a')) * (s'^-1 mod a') `
@@ -1259,11 +1266,23 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
12591266 //
12601267 // Furthermore, the result produced by this solution is not "minimal", so it is necessary
12611268 // to take the result `o mod lcm(s, a)`. We can replace `lcm(s, a)` with just a `a'`.
1262- let a2 = a >> gcdpow;
1263- let a2minus1 = a2. wrapping_sub ( 1 ) ;
1264- let s2 = smoda >> gcdpow;
1265- let minusp2 = a2. wrapping_sub ( pmoda >> gcdpow) ;
1266- return ( minusp2. wrapping_mul ( mod_inv ( s2, a2) ) ) & a2minus1;
1269+
1270+ // SAFETY: `gcdpow` has an upper-bound not greater than the number of trailing 0-bits in
1271+ // `a`.
1272+ let a2 = unsafe { unchecked_shr ( a, gcdpow) } ;
1273+ // SAFETY: `a2` is non-zero. Shifting `a` by `gcdpow` cannot shift out any of the set bits
1274+ // in `a` (of which it has exactly one).
1275+ let a2minus1 = unsafe { unchecked_sub ( a2, 1 ) } ;
1276+ // SAFETY: `gcdpow` has an upper-bound not greater than the number of trailing 0-bits in
1277+ // `a`.
1278+ let s2 = unsafe { unchecked_shr ( smoda, gcdpow) } ;
1279+ // SAFETY: `gcdpow` has an upper-bound not greater than the number of trailing 0-bits in
1280+ // `a`. Furthermore, the subtraction cannot overflow, because `a2 = a >> gcdpow` will
1281+ // always be strictly greater than `(p % a) >> gcdpow`.
1282+ let minusp2 = unsafe { unchecked_sub ( a2, unchecked_shr ( pmoda, gcdpow) ) } ;
1283+ // SAFETY: `a2` is a power-of-two, as proven above. `s2` is strictly less than `a2`
1284+ // because `(s % a) >> gcdpow` is strictly less than `a >> gcdpow`.
1285+ return wrapping_mul ( minusp2, unsafe { mod_inv ( s2, a2) } ) & a2minus1;
12671286 }
12681287
12691288 // Cannot be aligned at all.
0 commit comments