|
| 1 | +use crate::internal_queue::SimpleQueue; |
| 2 | +use std::cmp::min; |
| 3 | +use std::iter; |
| 4 | +use std::ops::{Add, AddAssign, Sub, SubAssign}; |
1 | 5 |
|
| 6 | +// Maybe it should be in a separate module |
| 7 | +pub trait MfCapacity: |
| 8 | + Copy + Ord + Add<Output = Self> + AddAssign + Sub<Output = Self> + SubAssign |
| 9 | +{ |
| 10 | + fn zero() -> Self; |
| 11 | + fn max_value() -> Self; |
| 12 | +} |
| 13 | + |
| 14 | +impl MfCapacity for i32 { |
| 15 | + fn zero() -> Self { |
| 16 | + 0 |
| 17 | + } |
| 18 | + fn max_value() -> Self { |
| 19 | + std::i32::MAX |
| 20 | + } |
| 21 | +} |
| 22 | + |
| 23 | +impl MfCapacity for i64 { |
| 24 | + fn zero() -> Self { |
| 25 | + 0 |
| 26 | + } |
| 27 | + fn max_value() -> Self { |
| 28 | + std::i64::MAX |
| 29 | + } |
| 30 | +} |
| 31 | + |
| 32 | +impl MfCapacity for u32 { |
| 33 | + fn zero() -> Self { |
| 34 | + 0 |
| 35 | + } |
| 36 | + fn max_value() -> Self { |
| 37 | + std::u32::MAX |
| 38 | + } |
| 39 | +} |
| 40 | + |
| 41 | +impl MfCapacity for u64 { |
| 42 | + fn zero() -> Self { |
| 43 | + 0 |
| 44 | + } |
| 45 | + fn max_value() -> Self { |
| 46 | + std::u64::MAX |
| 47 | + } |
| 48 | +} |
| 49 | + |
| 50 | +impl<Cap> MfGraph<Cap> |
| 51 | +where |
| 52 | + Cap: MfCapacity, |
| 53 | +{ |
| 54 | + pub fn new(n: usize) -> MfGraph<Cap> { |
| 55 | + MfGraph { |
| 56 | + _n: n, |
| 57 | + pos: Vec::new(), |
| 58 | + g: iter::repeat_with(Vec::new).take(n).collect(), |
| 59 | + } |
| 60 | + } |
| 61 | + |
| 62 | + pub fn add_edge(&mut self, from: usize, to: usize, cap: Cap) -> usize { |
| 63 | + assert!(from < self._n); |
| 64 | + assert!(to < self._n); |
| 65 | + assert!(Cap::zero() < cap); |
| 66 | + let m = self.pos.len(); |
| 67 | + self.pos.push((from, self.g[from].len())); |
| 68 | + let rev = self.g[to].len(); |
| 69 | + self.g[from].push(_Edge { to, rev, cap }); |
| 70 | + let rev = self.g[from].len() - 1; |
| 71 | + self.g[to].push(_Edge { |
| 72 | + to: from, |
| 73 | + rev, |
| 74 | + cap: Cap::zero(), |
| 75 | + }); |
| 76 | + m |
| 77 | + } |
| 78 | +} |
| 79 | + |
| 80 | +struct Edge<Cap> { |
| 81 | + from: usize, |
| 82 | + to: usize, |
| 83 | + cap: Cap, |
| 84 | + flow: Cap, |
| 85 | +} |
| 86 | + |
| 87 | +impl<Cap> MfGraph<Cap> |
| 88 | +where |
| 89 | + Cap: MfCapacity, |
| 90 | +{ |
| 91 | + fn get_edge(&self, i: usize) -> Edge<Cap> { |
| 92 | + let m = self.pos.len(); |
| 93 | + assert!(i < m); |
| 94 | + let _e = &self.g[self.pos[i].0][self.pos[i].1]; |
| 95 | + let _re = &self.g[_e.to][_e.rev]; |
| 96 | + Edge { |
| 97 | + from: self.pos[i].0, |
| 98 | + to: _e.to, |
| 99 | + cap: _e.cap + _re.cap, |
| 100 | + flow: _re.cap, |
| 101 | + } |
| 102 | + } |
| 103 | + fn edges(&self) -> Vec<Edge<Cap>> { |
| 104 | + let m = self.pos.len(); |
| 105 | + (0..m).map(|i| self.get_edge(i)).collect() |
| 106 | + } |
| 107 | + fn change_edge(&mut self, i: usize, new_cap: Cap, new_flow: Cap) { |
| 108 | + let m = self.pos.len(); |
| 109 | + assert!(i < m); |
| 110 | + assert!(Cap::zero() < new_flow && new_flow <= new_cap); |
| 111 | + let (to, rev) = { |
| 112 | + let _e = &mut self.g[self.pos[i].0][self.pos[i].1]; |
| 113 | + _e.cap = new_cap - new_flow; |
| 114 | + (_e.to, _e.rev) |
| 115 | + }; |
| 116 | + let _re = &mut self.g[to][rev]; |
| 117 | + _re.cap = new_flow; |
| 118 | + } |
| 119 | + |
| 120 | + pub fn flow(&mut self, s: usize, t: usize) -> Cap { |
| 121 | + self.flow_with_capacity(s, t, Cap::max_value()) |
| 122 | + } |
| 123 | + pub fn flow_with_capacity(&mut self, s: usize, t: usize, flow_limit: Cap) -> Cap { |
| 124 | + let n_ = self._n; |
| 125 | + assert!(s < n_); |
| 126 | + assert!(t < n_); |
| 127 | + |
| 128 | + let mut calc = FlowCalculator { |
| 129 | + graph: self, |
| 130 | + s, |
| 131 | + t, |
| 132 | + flow_limit, |
| 133 | + level: vec![0; n_], |
| 134 | + iter: vec![0; n_], |
| 135 | + que: SimpleQueue::default(), |
| 136 | + }; |
| 137 | + |
| 138 | + let mut flow = Cap::zero(); |
| 139 | + while flow < flow_limit { |
| 140 | + calc.bfs(); |
| 141 | + if calc.level[t] == -1 { |
| 142 | + break; |
| 143 | + } |
| 144 | + calc.iter.iter_mut().for_each(|e| *e = 0); |
| 145 | + while flow < flow_limit { |
| 146 | + let f = calc.dfs(t, flow_limit - flow); |
| 147 | + if f == Cap::zero() { |
| 148 | + break; |
| 149 | + } |
| 150 | + flow += f; |
| 151 | + } |
| 152 | + } |
| 153 | + flow |
| 154 | + } |
| 155 | + |
| 156 | + pub fn min_cut(&self, s: usize) -> Vec<bool> { |
| 157 | + let mut visited = vec![false; self._n]; |
| 158 | + let mut que = SimpleQueue::default(); |
| 159 | + que.push(s); |
| 160 | + while !que.empty() { |
| 161 | + let &p = que.front(); |
| 162 | + que.pop(); |
| 163 | + visited[p] = true; |
| 164 | + for e in &self.g[p] { |
| 165 | + if e.cap != Cap::zero() && !visited[e.to] { |
| 166 | + visited[e.to] = true; |
| 167 | + que.push(e.to); |
| 168 | + } |
| 169 | + } |
| 170 | + } |
| 171 | + visited |
| 172 | + } |
| 173 | +} |
| 174 | + |
| 175 | +struct FlowCalculator<'a, Cap> { |
| 176 | + graph: &'a mut MfGraph<Cap>, |
| 177 | + s: usize, |
| 178 | + t: usize, |
| 179 | + flow_limit: Cap, |
| 180 | + level: Vec<i32>, |
| 181 | + iter: Vec<usize>, |
| 182 | + que: SimpleQueue<usize>, |
| 183 | +} |
| 184 | + |
| 185 | +impl<Cap> FlowCalculator<'_, Cap> |
| 186 | +where |
| 187 | + Cap: MfCapacity, |
| 188 | +{ |
| 189 | + fn bfs(&mut self) { |
| 190 | + self.level.iter_mut().for_each(|e| *e = -1); |
| 191 | + self.level[self.s] = 0; |
| 192 | + self.que.clear(); |
| 193 | + self.que.push(self.s); |
| 194 | + while !self.que.empty() { |
| 195 | + let v = *self.que.front(); |
| 196 | + self.que.pop(); |
| 197 | + for e in &self.graph.g[v] { |
| 198 | + if e.cap == Cap::zero() || self.level[e.to] >= 0 { |
| 199 | + continue; |
| 200 | + } |
| 201 | + self.level[e.to] = self.level[v] + 1; |
| 202 | + if e.to == self.t { |
| 203 | + return; |
| 204 | + } |
| 205 | + self.que.push(e.to); |
| 206 | + } |
| 207 | + } |
| 208 | + } |
| 209 | + fn dfs(&mut self, v: usize, up: Cap) -> Cap { |
| 210 | + if v == self.s { |
| 211 | + return up; |
| 212 | + } |
| 213 | + let mut res = Cap::zero(); |
| 214 | + let level_v = self.level[v]; |
| 215 | + for i in self.iter[v]..self.graph.g[v].len() { |
| 216 | + self.iter[v] = i; |
| 217 | + let &_Edge { |
| 218 | + to: e_to, |
| 219 | + rev: e_rev, |
| 220 | + .. |
| 221 | + } = &self.graph.g[v][i]; |
| 222 | + if level_v <= self.level[e_to] || self.graph.g[e_to][e_rev].cap == Cap::zero() { |
| 223 | + continue; |
| 224 | + } |
| 225 | + let d = self.dfs(e_to, min(up - res, self.graph.g[e_to][e_rev].cap)); |
| 226 | + if d <= Cap::zero() { |
| 227 | + continue; |
| 228 | + } |
| 229 | + self.graph.g[v][i].cap += d; |
| 230 | + self.graph.g[e_to][e_rev].cap -= d; |
| 231 | + res += d; |
| 232 | + if res == up { |
| 233 | + break; |
| 234 | + } |
| 235 | + } |
| 236 | + return res; |
| 237 | + } |
| 238 | +} |
| 239 | + |
| 240 | +#[derive(Default)] |
| 241 | +pub struct MfGraph<Cap> { |
| 242 | + _n: usize, |
| 243 | + pos: Vec<(usize, usize)>, |
| 244 | + g: Vec<Vec<_Edge<Cap>>>, |
| 245 | +} |
| 246 | + |
| 247 | +struct _Edge<Cap> { |
| 248 | + to: usize, |
| 249 | + rev: usize, |
| 250 | + cap: Cap, |
| 251 | +} |
0 commit comments