|
| 1 | +/* |
| 2 | + * Ruby/OpenSSL Project |
| 3 | + * Copyright (C) 2007, 2017 Ruby/OpenSSL Project Authors |
| 4 | + */ |
| 5 | +#include "ossl.h" |
| 6 | + |
| 7 | +static VALUE mKDF, eKDF; |
| 8 | + |
| 9 | +/* |
| 10 | + * call-seq: |
| 11 | + * KDF.pbkdf2_hmac(pass, salt:, iterations:, length:, hash:) -> aString |
| 12 | + * |
| 13 | + * PKCS #5 PBKDF2 (Password-Based Key Derivation Function 2) in combination |
| 14 | + * with HMAC. Takes _pass_, _salt_ and _iterations_, and then derives a key |
| 15 | + * of _length_ bytes. |
| 16 | + * |
| 17 | + * For more information about PBKDF2, see RFC 2898 Section 5.2 |
| 18 | + * (https://tools.ietf.org/html/rfc2898#section-5.2). |
| 19 | + * |
| 20 | + * === Parameters |
| 21 | + * pass :: The passphrase. |
| 22 | + * salt :: The salt. Salts prevent attacks based on dictionaries of common |
| 23 | + * passwords and attacks based on rainbow tables. It is a public |
| 24 | + * value that can be safely stored along with the password (e.g. |
| 25 | + * if the derived value is used for password storage). |
| 26 | + * iterations :: The iteration count. This provides the ability to tune the |
| 27 | + * algorithm. It is better to use the highest count possible for |
| 28 | + * the maximum resistance to brute-force attacks. |
| 29 | + * length :: The desired length of the derived key in octets. |
| 30 | + * hash :: The hash algorithm used with HMAC for the PRF. May be a String |
| 31 | + * representing the algorithm name, or an instance of |
| 32 | + * OpenSSL::Digest. |
| 33 | + */ |
| 34 | +static VALUE |
| 35 | +kdf_pbkdf2_hmac(int argc, VALUE *argv, VALUE self) |
| 36 | +{ |
| 37 | + VALUE pass, salt, opts, kwargs[4], str; |
| 38 | + static ID kwargs_ids[4]; |
| 39 | + int iters, len; |
| 40 | + const EVP_MD *md; |
| 41 | + |
| 42 | + if (!kwargs_ids[0]) { |
| 43 | + kwargs_ids[0] = rb_intern_const("salt"); |
| 44 | + kwargs_ids[1] = rb_intern_const("iterations"); |
| 45 | + kwargs_ids[2] = rb_intern_const("length"); |
| 46 | + kwargs_ids[3] = rb_intern_const("hash"); |
| 47 | + } |
| 48 | + rb_scan_args(argc, argv, "1:", &pass, &opts); |
| 49 | + rb_get_kwargs(opts, kwargs_ids, 4, 0, kwargs); |
| 50 | + |
| 51 | + StringValue(pass); |
| 52 | + salt = StringValue(kwargs[0]); |
| 53 | + iters = NUM2INT(kwargs[1]); |
| 54 | + len = NUM2INT(kwargs[2]); |
| 55 | + md = GetDigestPtr(kwargs[3]); |
| 56 | + |
| 57 | + str = rb_str_new(0, len); |
| 58 | + if (!PKCS5_PBKDF2_HMAC(RSTRING_PTR(pass), RSTRING_LENINT(pass), |
| 59 | + (unsigned char *)RSTRING_PTR(salt), |
| 60 | + RSTRING_LENINT(salt), iters, md, len, |
| 61 | + (unsigned char *)RSTRING_PTR(str))) |
| 62 | + ossl_raise(eKDF, "PKCS5_PBKDF2_HMAC"); |
| 63 | + |
| 64 | + return str; |
| 65 | +} |
| 66 | + |
| 67 | +#if defined(HAVE_EVP_PBE_SCRYPT) |
| 68 | +/* |
| 69 | + * call-seq: |
| 70 | + * KDF.scrypt(pass, salt:, N:, r:, p:, length:) -> aString |
| 71 | + * |
| 72 | + * Derives a key from _pass_ using given parameters with the scrypt |
| 73 | + * password-based key derivation function. The result can be used for password |
| 74 | + * storage. |
| 75 | + * |
| 76 | + * scrypt is designed to be memory-hard and more secure against brute-force |
| 77 | + * attacks using custom hardwares than alternative KDFs such as PBKDF2 or |
| 78 | + * bcrypt. |
| 79 | + * |
| 80 | + * The keyword arguments _N_, _r_ and _p_ can be used to tune scrypt. RFC 7914 |
| 81 | + * (published on 2016-08, https://tools.ietf.org/html/rfc7914#section-2) states |
| 82 | + * that using values r=8 and p=1 appears to yield good results. |
| 83 | + * |
| 84 | + * See RFC 7914 (https://tools.ietf.org/html/rfc7914) for more information. |
| 85 | + * |
| 86 | + * === Parameters |
| 87 | + * pass :: Passphrase. |
| 88 | + * salt :: Salt. |
| 89 | + * N :: CPU/memory cost parameter. This must be a power of 2. |
| 90 | + * r :: Block size parameter. |
| 91 | + * p :: Parallelization parameter. |
| 92 | + * length :: Length in octets of the derived key. |
| 93 | + * |
| 94 | + * === Example |
| 95 | + * pass = "password" |
| 96 | + * salt = SecureRandom.random_bytes(16) |
| 97 | + * dk = OpenSSL::KDF.scrypt(pass, salt: salt, N: 2**14, r: 8, p: 1, length: 32) |
| 98 | + * p dk #=> "\xDA\xE4\xE2...\x7F\xA1\x01T" |
| 99 | + */ |
| 100 | +static VALUE |
| 101 | +kdf_scrypt(int argc, VALUE *argv, VALUE self) |
| 102 | +{ |
| 103 | + VALUE pass, salt, opts, kwargs[5], str; |
| 104 | + static ID kwargs_ids[5]; |
| 105 | + size_t len; |
| 106 | + uint64_t N, r, p, maxmem; |
| 107 | + |
| 108 | + if (!kwargs_ids[0]) { |
| 109 | + kwargs_ids[0] = rb_intern_const("salt"); |
| 110 | + kwargs_ids[1] = rb_intern_const("N"); |
| 111 | + kwargs_ids[2] = rb_intern_const("r"); |
| 112 | + kwargs_ids[3] = rb_intern_const("p"); |
| 113 | + kwargs_ids[4] = rb_intern_const("length"); |
| 114 | + } |
| 115 | + rb_scan_args(argc, argv, "1:", &pass, &opts); |
| 116 | + rb_get_kwargs(opts, kwargs_ids, 5, 0, kwargs); |
| 117 | + |
| 118 | + StringValue(pass); |
| 119 | + salt = StringValue(kwargs[0]); |
| 120 | + N = NUM2UINT64T(kwargs[1]); |
| 121 | + r = NUM2UINT64T(kwargs[2]); |
| 122 | + p = NUM2UINT64T(kwargs[3]); |
| 123 | + len = NUM2LONG(kwargs[4]); |
| 124 | + /* |
| 125 | + * OpenSSL uses 32MB by default (if zero is specified), which is too small. |
| 126 | + * Let's not limit memory consumption but just let malloc() fail inside |
| 127 | + * OpenSSL. The amount is controllable by other parameters. |
| 128 | + */ |
| 129 | + maxmem = SIZE_MAX; |
| 130 | + |
| 131 | + str = rb_str_new(0, len); |
| 132 | + if (!EVP_PBE_scrypt(RSTRING_PTR(pass), RSTRING_LEN(pass), |
| 133 | + (unsigned char *)RSTRING_PTR(salt), RSTRING_LEN(salt), |
| 134 | + N, r, p, maxmem, (unsigned char *)RSTRING_PTR(str), len)) |
| 135 | + ossl_raise(eKDF, "EVP_PBE_scrypt"); |
| 136 | + |
| 137 | + return str; |
| 138 | +} |
| 139 | +#endif |
| 140 | + |
| 141 | +void |
| 142 | +Init_ossl_kdf(void) |
| 143 | +{ |
| 144 | +#if 0 |
| 145 | + mOSSL = rb_define_module("OpenSSL"); |
| 146 | + eOSSLError = rb_define_class_under(mOSSL, "OpenSSLError", rb_eStandardError); |
| 147 | +#endif |
| 148 | + |
| 149 | + /* |
| 150 | + * Document-module: OpenSSL::KDF |
| 151 | + * |
| 152 | + * Provides functionality of various KDFs (key derivation function). |
| 153 | + * |
| 154 | + * KDF is typically used for securely deriving arbitrary length symmetric |
| 155 | + * keys to be used with an OpenSSL::Cipher from passwords. Another use case |
| 156 | + * is for storing passwords: Due to the ability to tweak the effort of |
| 157 | + * computation by increasing the iteration count, computation can be slowed |
| 158 | + * down artificially in order to render possible attacks infeasible. |
| 159 | + * |
| 160 | + * Currently, OpenSSL::KDF provides implementations for the following KDF: |
| 161 | + * |
| 162 | + * * PKCS #5 PBKDF2 (Password-Based Key Derivation Function 2) in |
| 163 | + * combination with HMAC |
| 164 | + * * scrypt |
| 165 | + * |
| 166 | + * == Examples |
| 167 | + * === Generating a 128 bit key for a Cipher (e.g. AES) |
| 168 | + * pass = "secret" |
| 169 | + * salt = OpenSSL::Random.random_bytes(16) |
| 170 | + * iter = 20_000 |
| 171 | + * key_len = 16 |
| 172 | + * key = OpenSSL::KDF.pbkdf2_hmac(pass, salt: salt, iterations: iter, |
| 173 | + * length: key_len, hash: "sha1") |
| 174 | + * |
| 175 | + * === Storing Passwords |
| 176 | + * pass = "secret" |
| 177 | + * # store this with the generated value |
| 178 | + * salt = OpenSSL::Random.random_bytes(16) |
| 179 | + * iter = 20_000 |
| 180 | + * hash = OpenSSL::Digest::SHA256.new |
| 181 | + * len = hash.digest_length |
| 182 | + * # the final value to be stored |
| 183 | + * value = OpenSSL::KDF.pbkdf2_hmac(pass, salt: salt, iterations: iter, |
| 184 | + * length: len, hash: hash) |
| 185 | + * |
| 186 | + * == Important Note on Checking Passwords |
| 187 | + * When comparing passwords provided by the user with previously stored |
| 188 | + * values, a common mistake made is comparing the two values using "==". |
| 189 | + * Typically, "==" short-circuits on evaluation, and is therefore |
| 190 | + * vulnerable to timing attacks. The proper way is to use a method that |
| 191 | + * always takes the same amount of time when comparing two values, thus |
| 192 | + * not leaking any information to potential attackers. To compare two |
| 193 | + * values, the following could be used: |
| 194 | + * |
| 195 | + * def eql_time_cmp(a, b) |
| 196 | + * unless a.length == b.length |
| 197 | + * return false |
| 198 | + * end |
| 199 | + * cmp = b.bytes |
| 200 | + * result = 0 |
| 201 | + * a.bytes.each_with_index {|c,i| |
| 202 | + * result |= c ^ cmp[i] |
| 203 | + * } |
| 204 | + * result == 0 |
| 205 | + * end |
| 206 | + * |
| 207 | + * Please note that the premature return in case of differing lengths |
| 208 | + * typically does not leak valuable information - when using PBKDF2, the |
| 209 | + * length of the values to be compared is of fixed size. |
| 210 | + */ |
| 211 | + mKDF = rb_define_module_under(mOSSL, "KDF"); |
| 212 | + /* |
| 213 | + * Generic exception class raised if an error occurs in OpenSSL::KDF module. |
| 214 | + */ |
| 215 | + eKDF = rb_define_class_under(mKDF, "KDFError", eOSSLError); |
| 216 | + |
| 217 | + rb_define_module_function(mKDF, "pbkdf2_hmac", kdf_pbkdf2_hmac, -1); |
| 218 | +#if defined(HAVE_EVP_PBE_SCRYPT) |
| 219 | + rb_define_module_function(mKDF, "scrypt", kdf_scrypt, -1); |
| 220 | +#endif |
| 221 | +} |
0 commit comments