Skip to content

Commit 10203d3

Browse files
committed
Fixed math for P = FPF^ #274
1 parent 82f7dba commit 10203d3

File tree

1 file changed

+3
-4
lines changed

1 file changed

+3
-4
lines changed

06-Multivariate-Kalman-Filters.ipynb

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1769,12 +1769,11 @@
17691769
"If you have some experience with linear algebra and statistics, this may help. The covariance due to the prediction can be modeled as the expected value of the error in the prediction step, given by this equation. \n",
17701770
"\n",
17711771
"$$\\begin{aligned}\n",
1772-
"\\bar{\\mathbf P} &= \\mathbb E[(\\mathbf{Fx})(\\mathbf{Fx})^\\mathsf T]\\\\\n",
1773-
" &= \\mathbb E[\\mathbf{Fxx}^\\mathsf T\\mathbf F^\\mathsf T] \\\\\n",
1774-
" &= \\mathbf F\\, \\mathbb E[\\mathbf{xx}^\\mathsf T]\\, \\mathbf F^\\mathsf T\n",
1772+
"\\bar{\\mathbf P} &= \\mathbb E[(\\mathbf{Fx - \\bar \\mu})(\\mathbf{Fx - \\bar\\mu})^\\mathsf T]\\\\\n",
1773+
" &= \\mathbf F\\, \\mathbb E[\\mathbf{(x- \\bar\\mu)(x- \\bar\\mu)}^\\mathsf T]\\, \\mathbf F^\\mathsf T\n",
17751774
"\\end{aligned}$$\n",
17761775
"\n",
1777-
"Of course, $\\mathbb E[\\mathbf{xx}^\\mathsf T]$ is just $\\mathbf P$, giving us\n",
1776+
"Of course, $\\mathbb E[\\mathbf{(x- \\bar\\mu)(x- \\bar\\mu)}^\\mathsf T]$ is just $\\mathbf P$, giving us\n",
17781777
"\n",
17791778
"$$\\bar{\\mathbf P} = \\mathbf{FPF}^\\mathsf T$$\n",
17801779
"\n",

0 commit comments

Comments
 (0)