|
64 | 64 | }, |
65 | 65 | { |
66 | 66 | "cell_type": "code", |
67 | | - "execution_count": 2, |
| 67 | + "execution_count": 3, |
68 | 68 | "metadata": {}, |
69 | 69 | "outputs": [], |
70 | 70 | "source": [ |
|
176 | 176 | "print(\"Number of Embeddings:\", len(embeddings))\n" |
177 | 177 | ] |
178 | 178 | }, |
| 179 | + { |
| 180 | + "cell_type": "markdown", |
| 181 | + "metadata": {}, |
| 182 | + "source": [ |
| 183 | + "### Azure OpenAI\n", |
| 184 | + "\n", |
| 185 | + "The ``AzureOpenAITextVectorizer`` is a variation of the OpenAI vectorizer that calls OpenAI models within Azure. If you've already installed ``openai``, then you're ready to use Azure OpenAI.\n", |
| 186 | + "\n", |
| 187 | + "The only practical difference between OpenAI and Azure OpenAI is the variables required to call the API." |
| 188 | + ] |
| 189 | + }, |
| 190 | + { |
| 191 | + "cell_type": "code", |
| 192 | + "execution_count": 4, |
| 193 | + "metadata": {}, |
| 194 | + "outputs": [], |
| 195 | + "source": [ |
| 196 | + "# additionally to the API Key, setup the API endpoint and version\n", |
| 197 | + "api_version = os.environ.get(\"OPENAI_API_VERSION\") or getpass.getpass(\"Enter your AzureOpenAI API version: \")\n", |
| 198 | + "azure_endpoint = os.environ.get(\"AZURE_OPENAI_ENDPOINT\") or getpass.getpass(\"Enter your AzureOpenAI API endpoint: \")" |
| 199 | + ] |
| 200 | + }, |
| 201 | + { |
| 202 | + "cell_type": "code", |
| 203 | + "execution_count": 5, |
| 204 | + "metadata": {}, |
| 205 | + "outputs": [ |
| 206 | + { |
| 207 | + "name": "stdout", |
| 208 | + "output_type": "stream", |
| 209 | + "text": [ |
| 210 | + "Vector dimensions: 1536\n" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "data": { |
| 215 | + "text/plain": [ |
| 216 | + "[-0.0010088568087667227,\n", |
| 217 | + " -0.003142790636047721,\n", |
| 218 | + " 0.0024922797456383705,\n", |
| 219 | + " -0.004522906616330147,\n", |
| 220 | + " -0.010369433090090752,\n", |
| 221 | + " 0.012739036232233047,\n", |
| 222 | + " -0.005365503951907158,\n", |
| 223 | + " -0.0029668458737432957,\n", |
| 224 | + " -0.007141091860830784,\n", |
| 225 | + " -0.03383301943540573]" |
| 226 | + ] |
| 227 | + }, |
| 228 | + "execution_count": 5, |
| 229 | + "metadata": {}, |
| 230 | + "output_type": "execute_result" |
| 231 | + } |
| 232 | + ], |
| 233 | + "source": [ |
| 234 | + "from redisvl.utils.vectorize import AzureOpenAITextVectorizer\n", |
| 235 | + "\n", |
| 236 | + "# create a vectorizer\n", |
| 237 | + "az_oai = AzureOpenAITextVectorizer(\n", |
| 238 | + " model=\"text-embedding-ada-002\", # Must be your custom deployment name\n", |
| 239 | + " api_config={\n", |
| 240 | + " \"api_key\": api_key,\n", |
| 241 | + " \"api_version\": api_version,\n", |
| 242 | + " \"azure_endpoint\": azure_endpoint\n", |
| 243 | + " },\n", |
| 244 | + ")\n", |
| 245 | + "\n", |
| 246 | + "test = az_oai.embed(\"This is a test sentence.\")\n", |
| 247 | + "print(\"Vector dimensions: \", len(test))\n", |
| 248 | + "test[:10]" |
| 249 | + ] |
| 250 | + }, |
| 251 | + { |
| 252 | + "cell_type": "code", |
| 253 | + "execution_count": 6, |
| 254 | + "metadata": {}, |
| 255 | + "outputs": [ |
| 256 | + { |
| 257 | + "data": { |
| 258 | + "text/plain": [ |
| 259 | + "[-0.017460526898503304,\n", |
| 260 | + " -6.895032856846228e-05,\n", |
| 261 | + " 0.0013909287517890334,\n", |
| 262 | + " -0.025688467547297478,\n", |
| 263 | + " -0.019813183695077896,\n", |
| 264 | + " 0.016087085008621216,\n", |
| 265 | + " -0.003729278687387705,\n", |
| 266 | + " 0.0009211922879330814,\n", |
| 267 | + " 0.006606514099985361,\n", |
| 268 | + " -0.025128915905952454]" |
| 269 | + ] |
| 270 | + }, |
| 271 | + "execution_count": 6, |
| 272 | + "metadata": {}, |
| 273 | + "output_type": "execute_result" |
| 274 | + } |
| 275 | + ], |
| 276 | + "source": [ |
| 277 | + "# Just like OpenAI, AzureOpenAI supports batching embeddings and asynchronous requests.\n", |
| 278 | + "sentences = [\n", |
| 279 | + " \"That is a happy dog\",\n", |
| 280 | + " \"That is a happy person\",\n", |
| 281 | + " \"Today is a sunny day\"\n", |
| 282 | + "]\n", |
| 283 | + "\n", |
| 284 | + "embeddings = await az_oai.aembed_many(sentences)\n", |
| 285 | + "embeddings[0][:10]" |
| 286 | + ] |
| 287 | + }, |
179 | 288 | { |
180 | 289 | "cell_type": "markdown", |
181 | 290 | "metadata": {}, |
|
547 | 656 | "name": "python", |
548 | 657 | "nbconvert_exporter": "python", |
549 | 658 | "pygments_lexer": "ipython3", |
550 | | - "version": "3.9.12" |
| 659 | + "version": "3.11.5" |
551 | 660 | }, |
552 | 661 | "orig_nbformat": 4, |
553 | 662 | "vscode": { |
|
0 commit comments