|
5 | 5 | # |
6 | 6 | # ---------------------------------------------------------------------------- |
7 | 7 | from typing import Any, Dict, Optional, Tuple, Union |
8 | | -from venv import logger |
9 | 8 |
|
10 | | -import numpy as np |
11 | 9 | import torch |
12 | 10 | import torch.nn as nn |
13 | 11 | from diffusers.models.attention_dispatch import dispatch_attention_fn |
14 | | -from diffusers.models.modeling_outputs import Transformer2DModelOutput |
15 | 12 | from diffusers.models.transformers.transformer_flux import ( |
16 | 13 | FluxAttention, |
17 | 14 | FluxAttnProcessor, |
|
22 | 19 | ) |
23 | 20 |
|
24 | 21 | from QEfficient.diffusers.models.normalization import ( |
25 | | - QEffAdaLayerNormContinuous, |
26 | 22 | QEffAdaLayerNormZero, |
27 | 23 | QEffAdaLayerNormZeroSingle, |
28 | 24 | ) |
@@ -253,198 +249,28 @@ def forward( |
253 | 249 |
|
254 | 250 |
|
255 | 251 | class QEffFluxTransformer2DModel(FluxTransformer2DModel): |
256 | | - def __init__( |
257 | | - self, |
258 | | - patch_size: int = 1, |
259 | | - in_channels: int = 64, |
260 | | - out_channels: Optional[int] = None, |
261 | | - num_layers: int = 19, |
262 | | - num_single_layers: int = 38, |
263 | | - attention_head_dim: int = 128, |
264 | | - num_attention_heads: int = 24, |
265 | | - joint_attention_dim: int = 4096, |
266 | | - pooled_projection_dim: int = 768, |
267 | | - guidance_embeds: bool = False, |
268 | | - axes_dims_rope: Tuple[int, int, int] = (16, 56, 56), |
269 | | - ): |
270 | | - super().__init__( |
271 | | - patch_size=patch_size, |
272 | | - in_channels=in_channels, |
273 | | - out_channels=out_channels, |
274 | | - num_layers=num_layers, |
275 | | - num_single_layers=num_single_layers, |
276 | | - attention_head_dim=attention_head_dim, |
277 | | - num_attention_heads=num_attention_heads, |
278 | | - joint_attention_dim=joint_attention_dim, |
279 | | - pooled_projection_dim=pooled_projection_dim, |
280 | | - guidance_embeds=guidance_embeds, |
281 | | - axes_dims_rope=axes_dims_rope, |
282 | | - ) |
283 | | - |
284 | | - self.transformer_blocks = nn.ModuleList( |
285 | | - [ |
286 | | - QEffFluxTransformerBlock( |
287 | | - dim=self.inner_dim, |
288 | | - num_attention_heads=num_attention_heads, |
289 | | - attention_head_dim=attention_head_dim, |
290 | | - ) |
291 | | - for _ in range(num_layers) |
292 | | - ] |
293 | | - ) |
294 | | - |
295 | | - self.single_transformer_blocks = nn.ModuleList( |
296 | | - [ |
297 | | - QEffFluxSingleTransformerBlock( |
298 | | - dim=self.inner_dim, |
299 | | - num_attention_heads=num_attention_heads, |
300 | | - attention_head_dim=attention_head_dim, |
301 | | - ) |
302 | | - for _ in range(num_single_layers) |
303 | | - ] |
304 | | - ) |
305 | | - |
306 | | - self.norm_out = QEffAdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) |
| 252 | + def __qeff_init__(self): |
| 253 | + self.transformer_blocks = nn.ModuleList() |
| 254 | + self._block_classes = set() |
| 255 | + |
| 256 | + for _ in range(self.config.num_layers): |
| 257 | + BlockClass = QEffFluxTransformerBlock |
| 258 | + block = BlockClass( |
| 259 | + dim=self.inner_dim, |
| 260 | + num_attention_heads=self.config.num_attention_heads, |
| 261 | + attention_head_dim=self.config.attention_head_dim, |
| 262 | + ) |
| 263 | + self.transformer_blocks.append(block) |
| 264 | + self._block_classes.add(BlockClass) |
307 | 265 |
|
308 | | - def forward( |
309 | | - self, |
310 | | - hidden_states: torch.Tensor, |
311 | | - encoder_hidden_states: torch.Tensor = None, |
312 | | - pooled_projections: torch.Tensor = None, |
313 | | - timestep: torch.LongTensor = None, |
314 | | - img_ids: torch.Tensor = None, |
315 | | - txt_ids: torch.Tensor = None, |
316 | | - adaln_emb: torch.Tensor = None, |
317 | | - adaln_single_emb: torch.Tensor = None, |
318 | | - adaln_out: torch.Tensor = None, |
319 | | - guidance: torch.Tensor = None, |
320 | | - joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
321 | | - controlnet_block_samples=None, |
322 | | - controlnet_single_block_samples=None, |
323 | | - return_dict: bool = True, |
324 | | - controlnet_blocks_repeat: bool = False, |
325 | | - ) -> Union[torch.Tensor, Transformer2DModelOutput]: |
326 | | - """ |
327 | | - The [`FluxTransformer2DModel`] forward method. |
328 | | -
|
329 | | - Args: |
330 | | - hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`): |
331 | | - Input `hidden_states`. |
332 | | - encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`): |
333 | | - Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. |
334 | | - pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected |
335 | | - from the embeddings of input conditions. |
336 | | - timestep ( `torch.LongTensor`): |
337 | | - Used to indicate denoising step. |
338 | | - block_controlnet_hidden_states: (`list` of `torch.Tensor`): |
339 | | - A list of tensors that if specified are added to the residuals of transformer blocks. |
340 | | - joint_attention_kwargs (`dict`, *optional*): |
341 | | - A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
342 | | - `self.processor` in |
343 | | - [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
344 | | - return_dict (`bool`, *optional*, defaults to `True`): |
345 | | - Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain |
346 | | - tuple. |
347 | | - Returns: |
348 | | - If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
349 | | - `tuple` where the first element is the sample tensor. |
350 | | - """ |
351 | | - |
352 | | - hidden_states = self.x_embedder(hidden_states) |
353 | | - |
354 | | - timestep = timestep.to(hidden_states.dtype) * 1000 |
355 | | - if guidance is not None: |
356 | | - guidance = guidance.to(hidden_states.dtype) * 1000 |
357 | | - |
358 | | - temb = ( |
359 | | - self.time_text_embed(timestep, pooled_projections) |
360 | | - if guidance is None |
361 | | - else self.time_text_embed(timestep, guidance, pooled_projections) |
362 | | - ) |
363 | | - encoder_hidden_states = self.context_embedder(encoder_hidden_states) |
| 266 | + self.single_transformer_blocks = nn.ModuleList() |
364 | 267 |
|
365 | | - if txt_ids.ndim == 3: |
366 | | - logger.warning( |
367 | | - "Passing `txt_ids` 3d torch.Tensor is deprecated." |
368 | | - "Please remove the batch dimension and pass it as a 2d torch Tensor" |
369 | | - ) |
370 | | - txt_ids = txt_ids[0] |
371 | | - if img_ids.ndim == 3: |
372 | | - logger.warning( |
373 | | - "Passing `img_ids` 3d torch.Tensor is deprecated." |
374 | | - "Please remove the batch dimension and pass it as a 2d torch Tensor" |
| 268 | + for _ in range(self.config.num_single_layers): |
| 269 | + SingleBlockClass = QEffFluxSingleTransformerBlock |
| 270 | + single_block = SingleBlockClass( |
| 271 | + dim=self.inner_dim, |
| 272 | + num_attention_heads=self.config.num_attention_heads, |
| 273 | + attention_head_dim=self.config.attention_head_dim, |
375 | 274 | ) |
376 | | - img_ids = img_ids[0] |
377 | | - |
378 | | - ids = torch.cat((txt_ids, img_ids), dim=0) |
379 | | - image_rotary_emb = self.pos_embed(ids) |
380 | | - |
381 | | - if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs: |
382 | | - ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds") |
383 | | - ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds) |
384 | | - joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states}) |
385 | | - |
386 | | - for index_block, block in enumerate(self.transformer_blocks): |
387 | | - if torch.is_grad_enabled() and self.gradient_checkpointing: |
388 | | - encoder_hidden_states, hidden_states = self._gradient_checkpointing_func( |
389 | | - block, |
390 | | - hidden_states, |
391 | | - encoder_hidden_states, |
392 | | - temb, |
393 | | - image_rotary_emb, |
394 | | - joint_attention_kwargs, |
395 | | - ) |
396 | | - |
397 | | - else: |
398 | | - encoder_hidden_states, hidden_states = block( |
399 | | - hidden_states=hidden_states, |
400 | | - encoder_hidden_states=encoder_hidden_states, |
401 | | - temb=adaln_emb[index_block], |
402 | | - image_rotary_emb=image_rotary_emb, |
403 | | - joint_attention_kwargs=joint_attention_kwargs, |
404 | | - ) |
405 | | - |
406 | | - # controlnet residual |
407 | | - if controlnet_block_samples is not None: |
408 | | - interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) |
409 | | - interval_control = int(np.ceil(interval_control)) |
410 | | - # For Xlabs ControlNet. |
411 | | - if controlnet_blocks_repeat: |
412 | | - hidden_states = ( |
413 | | - hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)] |
414 | | - ) |
415 | | - else: |
416 | | - hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] |
417 | | - |
418 | | - for index_block, block in enumerate(self.single_transformer_blocks): |
419 | | - if torch.is_grad_enabled() and self.gradient_checkpointing: |
420 | | - encoder_hidden_states, hidden_states = self._gradient_checkpointing_func( |
421 | | - block, |
422 | | - hidden_states, |
423 | | - encoder_hidden_states, |
424 | | - temb, |
425 | | - image_rotary_emb, |
426 | | - joint_attention_kwargs, |
427 | | - ) |
428 | | - |
429 | | - else: |
430 | | - encoder_hidden_states, hidden_states = block( |
431 | | - hidden_states=hidden_states, |
432 | | - encoder_hidden_states=encoder_hidden_states, |
433 | | - temb=adaln_single_emb[index_block], |
434 | | - image_rotary_emb=image_rotary_emb, |
435 | | - joint_attention_kwargs=joint_attention_kwargs, |
436 | | - ) |
437 | | - |
438 | | - # controlnet residual |
439 | | - if controlnet_single_block_samples is not None: |
440 | | - interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) |
441 | | - interval_control = int(np.ceil(interval_control)) |
442 | | - hidden_states = hidden_states + controlnet_single_block_samples[index_block // interval_control] |
443 | | - |
444 | | - hidden_states = self.norm_out(hidden_states, adaln_out) |
445 | | - output = self.proj_out(hidden_states) |
446 | | - |
447 | | - if not return_dict: |
448 | | - return (output,) |
449 | | - |
450 | | - return Transformer2DModelOutput(sample=output) |
| 275 | + self.single_transformer_blocks.append(single_block) |
| 276 | + self._block_classes.add(SingleBlockClass) |
0 commit comments