diff --git a/torchvision/transforms/functional.py b/torchvision/transforms/functional.py index 7b950b0c45b..c261de570ae 100644 --- a/torchvision/transforms/functional.py +++ b/torchvision/transforms/functional.py @@ -385,7 +385,7 @@ def _compute_resized_output_size( def resize( - img: Tensor, + img: Union[PIL.Image.Image, Tensor], size: list[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR, max_size: Optional[int] = None, @@ -479,7 +479,7 @@ def resize( return F_t.resize(img, size=output_size, interpolation=interpolation.value, antialias=antialias) -def pad(img: Tensor, padding: list[int], fill: Union[int, float] = 0, padding_mode: str = "constant") -> Tensor: +def pad(img: Union[PIL.Image.Image, Tensor], padding: list[int], fill: Union[int, float] = 0, padding_mode: str = "constant") -> Tensor: r"""Pad the given image on all sides with the given "pad" value. If the image is torch Tensor, it is expected to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric, diff --git a/torchvision/transforms/v2/functional/_geometry.py b/torchvision/transforms/v2/functional/_geometry.py index 4fcb7fabe0d..38976ecad48 100644 --- a/torchvision/transforms/v2/functional/_geometry.py +++ b/torchvision/transforms/v2/functional/_geometry.py @@ -236,7 +236,7 @@ def _compute_resized_output_size( def resize( - inpt: torch.Tensor, + inpt: Union[PIL.Image.Image, torch.Tensor], size: Optional[list[int]], interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, max_size: Optional[int] = None, @@ -1509,7 +1509,7 @@ def rotate_video( def pad( - inpt: torch.Tensor, + inpt: Union[PIL.Image.Image, torch.Tensor], padding: list[int], fill: Optional[Union[int, float, list[float]]] = None, padding_mode: str = "constant",