|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import math |
| 8 | +import re |
| 9 | +from typing import Any |
| 10 | + |
| 11 | +import torch |
| 12 | +from torch.distributed.tensor import DTensor |
| 13 | +from torchtitan.models.utils import MoEStateDictAdapter |
| 14 | + |
| 15 | +from .args import GptOssModelArgs |
| 16 | + |
| 17 | + |
| 18 | +FP4_VALUES = [ |
| 19 | + +0.0, |
| 20 | + +0.5, |
| 21 | + +1.0, |
| 22 | + +1.5, |
| 23 | + +2.0, |
| 24 | + +3.0, |
| 25 | + +4.0, |
| 26 | + +6.0, |
| 27 | + -0.0, |
| 28 | + -0.5, |
| 29 | + -1.0, |
| 30 | + -1.5, |
| 31 | + -2.0, |
| 32 | + -3.0, |
| 33 | + -4.0, |
| 34 | + -6.0, |
| 35 | +] |
| 36 | + |
| 37 | + |
| 38 | +def get_mxfp4_tensor( |
| 39 | + blocks, |
| 40 | + scales, |
| 41 | + *, |
| 42 | + dtype: torch.dtype = torch.bfloat16, |
| 43 | + rows_per_chunk: int = 16384 * 512, |
| 44 | +) -> torch.Tensor: |
| 45 | + """ |
| 46 | + Adapted from openai's implementation of mxfp4 dequantization: |
| 47 | + https://github.com/openai/gpt-oss/blob/8890e95919f975a490fc0ba09ffb10890ec7319d/gpt_oss/torch/weights.py#L68 |
| 48 | + """ |
| 49 | + |
| 50 | + is_dtensor = isinstance(blocks, DTensor) |
| 51 | + if is_dtensor: |
| 52 | + device_mesh = blocks.device_mesh |
| 53 | + placements = blocks.placements |
| 54 | + blocks = blocks.to_local() |
| 55 | + scales = scales.to_local() |
| 56 | + |
| 57 | + scales = scales.to(torch.int32) - 127 |
| 58 | + |
| 59 | + assert ( |
| 60 | + blocks.shape[:-1] == scales.shape |
| 61 | + ), f"{blocks.shape=} does not match {scales.shape=}" |
| 62 | + |
| 63 | + lut = torch.tensor(FP4_VALUES, dtype=dtype, device=blocks.device) |
| 64 | + |
| 65 | + *prefix_shape, G, B = blocks.shape |
| 66 | + rows_total = math.prod(prefix_shape) * G |
| 67 | + |
| 68 | + blocks = blocks.reshape(rows_total, B) |
| 69 | + scales = scales.reshape(rows_total, 1) |
| 70 | + |
| 71 | + out = torch.empty(rows_total, B * 2, dtype=dtype, device=blocks.device) |
| 72 | + |
| 73 | + for r0 in range(0, rows_total, rows_per_chunk): |
| 74 | + r1 = min(r0 + rows_per_chunk, rows_total) |
| 75 | + |
| 76 | + blk = blocks[r0:r1] |
| 77 | + exp = scales[r0:r1] |
| 78 | + |
| 79 | + # nibble indices -> int64 |
| 80 | + idx_lo = (blk & 0x0F).to(torch.long) |
| 81 | + idx_hi = (blk >> 4).to(torch.long) |
| 82 | + |
| 83 | + sub = out[r0:r1] |
| 84 | + sub[:, 0::2] = lut[idx_lo] |
| 85 | + sub[:, 1::2] = lut[idx_hi] |
| 86 | + |
| 87 | + torch.ldexp(sub, exp, out=sub) |
| 88 | + del idx_lo, idx_hi, blk, exp |
| 89 | + |
| 90 | + result = out.reshape(*prefix_shape, G, B * 2).view(*prefix_shape, G * B * 2) |
| 91 | + |
| 92 | + if is_dtensor: |
| 93 | + result = DTensor.from_local( |
| 94 | + result, device_mesh=device_mesh, placements=placements |
| 95 | + ) |
| 96 | + |
| 97 | + return result |
| 98 | + |
| 99 | + |
| 100 | +class GptOssStateDictAdapter(MoEStateDictAdapter): |
| 101 | + def __init__(self, model_args: GptOssModelArgs, hf_assets_path: str | None): |
| 102 | + super().__init__(model_args, hf_assets_path) |
| 103 | + self.from_hf_map = { |
| 104 | + "model.embed_tokens.weight": "tok_embeddings.weight", |
| 105 | + # Attention module |
| 106 | + "model.layers.{}.self_attn.q_proj.weight": "layers.{}.attention.wq.weight", |
| 107 | + "model.layers.{}.self_attn.q_proj.bias": "layers.{}.attention.wq.bias", |
| 108 | + "model.layers.{}.self_attn.k_proj.weight": "layers.{}.attention.wk.weight", |
| 109 | + "model.layers.{}.self_attn.k_proj.bias": "layers.{}.attention.wk.bias", |
| 110 | + "model.layers.{}.self_attn.v_proj.weight": "layers.{}.attention.wv.weight", |
| 111 | + "model.layers.{}.self_attn.v_proj.bias": "layers.{}.attention.wv.bias", |
| 112 | + "model.layers.{}.self_attn.o_proj.weight": "layers.{}.attention.wo.weight", |
| 113 | + "model.layers.{}.self_attn.o_proj.bias": "layers.{}.attention.wo.bias", |
| 114 | + "model.layers.{}.self_attn.sinks": "layers.{}.attention.sinks", |
| 115 | + # Transformer layer |
| 116 | + "model.layers.{}.input_layernorm.weight": "layers.{}.attention_norm.weight", |
| 117 | + "model.layers.{}.post_attention_layernorm.weight": "layers.{}.ffn_norm.weight", |
| 118 | + # MoE |
| 119 | + ( |
| 120 | + "model.layers.{}.mlp.experts.gate_up_proj_blocks", |
| 121 | + "model.layers.{}.mlp.experts.gate_up_proj_scales", |
| 122 | + ): "layers.{}.moe.experts.mlp1_weight", |
| 123 | + "model.layers.{}.mlp.experts.gate_up_proj_bias": "layers.{}.moe.experts.mlp1_bias", |
| 124 | + ( |
| 125 | + "model.layers.{}.mlp.experts.down_proj_blocks", |
| 126 | + "model.layers.{}.mlp.experts.down_proj_scales", |
| 127 | + ): "layers.{}.moe.experts.mlp2_weight", |
| 128 | + "model.layers.{}.mlp.experts.down_proj_bias": "layers.{}.moe.experts.mlp2_bias", |
| 129 | + "model.layers.{}.mlp.router.weight": "layers.{}.moe.router.gate.weight", |
| 130 | + "model.layers.{}.mlp.router.bias": "layers.{}.moe.router.gate.bias", |
| 131 | + "model.norm.weight": "norm.weight", |
| 132 | + "lm_head.weight": "output.weight", |
| 133 | + } |
| 134 | + |
| 135 | + def to_hf(self, state_dict: dict[str, Any]) -> dict[str, Any]: |
| 136 | + """ |
| 137 | + Convert from a tt model state dict to a hf format state dict. |
| 138 | + Warning: Conversion does not support mxfp4 quantization, |
| 139 | + and the function is only for the purpose of loading from hf checkpoints. |
| 140 | + TODO: Add support for exact conversion of mxfp4 quantized tensors, |
| 141 | + then one can save into hf checkpoints with last_save_in_hf = true. |
| 142 | + """ |
| 143 | + to_hf_map = {v: k for k, v in self.from_hf_map.items()} |
| 144 | + hf_state_dict = {} |
| 145 | + |
| 146 | + for key, value in state_dict.items(): |
| 147 | + if "layers" in key: |
| 148 | + abstract_key = re.sub(r"(\d+)", "{}", key, count=1) |
| 149 | + if abstract_key not in to_hf_map: |
| 150 | + continue |
| 151 | + layer_num = re.search(r"\d+", key).group(0) |
| 152 | + hf_key = to_hf_map[abstract_key] |
| 153 | + match hf_key: |
| 154 | + case (blocks, scales): |
| 155 | + blocks = blocks.format(layer_num) |
| 156 | + scales = scales.format(layer_num) |
| 157 | + hf_state_dict[blocks] = value.new_empty( |
| 158 | + (*value.shape[:2], value.shape[2] // 32, 16), |
| 159 | + dtype=torch.uint8, |
| 160 | + ) |
| 161 | + hf_state_dict[scales] = value.new_empty( |
| 162 | + (*value.shape[:2], value.shape[2] // 32), |
| 163 | + dtype=torch.uint8, |
| 164 | + ) |
| 165 | + case tensor_name: |
| 166 | + tensor_name = tensor_name.format(layer_num) |
| 167 | + hf_state_dict[tensor_name] = value |
| 168 | + else: |
| 169 | + hf_key = to_hf_map[key] |
| 170 | + hf_state_dict[hf_key] = value |
| 171 | + |
| 172 | + return hf_state_dict |
| 173 | + |
| 174 | + def from_hf(self, hf_state_dict: dict[str, Any]) -> dict[str, Any]: |
| 175 | + """ |
| 176 | + Convert from quantized hf format state dict to tt model state dict. |
| 177 | + """ |
| 178 | + |
| 179 | + state_dict = {} |
| 180 | + |
| 181 | + subtract_key = lambda key: re.sub(r"(\d+)", "{}", key, count=1) |
| 182 | + |
| 183 | + for key, value in hf_state_dict.items(): |
| 184 | + if "layers" in key: |
| 185 | + layer_num = re.search(r"\d+", key).group(0) |
| 186 | + if "_blocks" in key: |
| 187 | + value_scale = hf_state_dict[key.replace("_blocks", "_scales")] |
| 188 | + abstract_key = ( |
| 189 | + subtract_key(key), |
| 190 | + subtract_key(key.replace("_blocks", "_scales")), |
| 191 | + ) |
| 192 | + tt_key = self.from_hf_map[abstract_key] |
| 193 | + tt_key = tt_key.format(layer_num) |
| 194 | + dequantized_values = get_mxfp4_tensor(value, value_scale) |
| 195 | + state_dict[tt_key] = dequantized_values |
| 196 | + elif "_scales" not in key: |
| 197 | + abstract_key = subtract_key(key) |
| 198 | + tt_key = self.from_hf_map[abstract_key] |
| 199 | + tt_key = tt_key.format(layer_num) |
| 200 | + state_dict[tt_key] = value |
| 201 | + else: |
| 202 | + tt_key = self.from_hf_map[key] |
| 203 | + state_dict[tt_key] = value |
| 204 | + |
| 205 | + return state_dict |
0 commit comments