|
| 1 | +"""Example of updating weights of several models at once in a multiprocessed data collector. |
| 2 | +
|
| 3 | +This example demonstrates: |
| 4 | +1. Using different weight sync schemes for different models |
| 5 | +2. Updating the policy (via pipes with MultiProcessWeightSyncScheme) |
| 6 | +3. Updating Ray-based transforms in env and replay buffer (via RayModuleTransformScheme) |
| 7 | +4. Atomic multi-model weight updates using weights_dict |
| 8 | +
|
| 9 | +Note: |
| 10 | +- Ray actors are shared across all workers, so RayModuleTransformScheme uses a |
| 11 | + single transport rather than per-worker pipes. |
| 12 | +- When using transform_factory with a replay buffer, delayed_init automatically defaults |
| 13 | + to True for proper serialization in multiprocessing contexts. |
| 14 | +- extend_buffer defaults to True in all collectors, extending the buffer with entire |
| 15 | + rollouts rather than individual frames for better compatibility with postprocessing. |
| 16 | +""" |
| 17 | + |
| 18 | +from functools import partial |
| 19 | + |
| 20 | +import torch.nn as nn |
| 21 | +from tensordict import TensorDict |
| 22 | +from tensordict.nn import TensorDictModule |
| 23 | + |
| 24 | +from torchrl.collectors import MultiSyncDataCollector |
| 25 | +from torchrl.data import LazyTensorStorage, ReplayBuffer |
| 26 | +from torchrl.envs.libs.gym import GymEnv |
| 27 | +from torchrl.envs.transforms.module import ModuleTransform |
| 28 | +from torchrl.weight_update.weight_sync_schemes import MultiProcessWeightSyncScheme |
| 29 | + |
| 30 | + |
| 31 | +def make_module(): |
| 32 | + # A module that transforms the observations |
| 33 | + return TensorDictModule( |
| 34 | + nn.Linear(3, 3), in_keys=["observation"], out_keys=["observation"] |
| 35 | + ) |
| 36 | + |
| 37 | + |
| 38 | +def policy_factory(): |
| 39 | + # A module that produces the actions |
| 40 | + return TensorDictModule( |
| 41 | + nn.Linear(3, 1), in_keys=["observation"], out_keys=["action"] |
| 42 | + ) |
| 43 | + |
| 44 | + |
| 45 | +def make_env(): |
| 46 | + env_module = ModuleTransform( |
| 47 | + module_factory=make_module, inverse=False, no_grad=True |
| 48 | + ) |
| 49 | + return GymEnv("Pendulum-v1").append_transform(env_module) |
| 50 | + |
| 51 | + |
| 52 | +def main(): |
| 53 | + rb = ReplayBuffer( |
| 54 | + storage=LazyTensorStorage(10000, shared_init=True), |
| 55 | + transform_factory=partial( |
| 56 | + ModuleTransform, |
| 57 | + module_factory=make_module, |
| 58 | + inverse=True, |
| 59 | + no_grad=True, |
| 60 | + ), |
| 61 | + # delayed_init automatically defaults to True when transform_factory is provided |
| 62 | + ) |
| 63 | + |
| 64 | + policy = policy_factory() |
| 65 | + |
| 66 | + weight_sync_schemes = { |
| 67 | + "policy": MultiProcessWeightSyncScheme(strategy="state_dict"), |
| 68 | + "replay_buffer.transform[0].module": MultiProcessWeightSyncScheme( |
| 69 | + strategy="tensordict" |
| 70 | + ), |
| 71 | + "env.transform[0].module": MultiProcessWeightSyncScheme(strategy="tensordict"), |
| 72 | + } |
| 73 | + |
| 74 | + collector = MultiSyncDataCollector( |
| 75 | + create_env_fn=[make_env, make_env], |
| 76 | + policy_factory=policy_factory, |
| 77 | + total_frames=2000, |
| 78 | + max_frames_per_traj=50, |
| 79 | + frames_per_batch=200, |
| 80 | + init_random_frames=-1, |
| 81 | + device="cpu", |
| 82 | + storing_device="cpu", |
| 83 | + weight_sync_schemes=weight_sync_schemes, |
| 84 | + replay_buffer=rb, |
| 85 | + local_init_rb=True, |
| 86 | + # extend_buffer=True is the default for MultiSyncDataCollector |
| 87 | + ) |
| 88 | + |
| 89 | + policy_weights = TensorDict.from_module(policy).data |
| 90 | + env_module_weights = TensorDict.from_module(make_module()).data |
| 91 | + rb_module_weights = TensorDict.from_module(make_module()).data |
| 92 | + |
| 93 | + for i, _data in enumerate(collector): |
| 94 | + env_module_weights.zero_() |
| 95 | + rb_module_weights.zero_() |
| 96 | + policy_weights.zero_() |
| 97 | + |
| 98 | + collector.update_policy_weights_( |
| 99 | + weights_dict={ |
| 100 | + "policy": policy_weights, |
| 101 | + "env.transform[0].module": env_module_weights, |
| 102 | + "replay_buffer.transform[0].module": rb_module_weights, |
| 103 | + } |
| 104 | + ) |
| 105 | + |
| 106 | + assert len(rb) == i * 200 + 200 |
| 107 | + |
| 108 | + if i >= 10: |
| 109 | + break |
| 110 | + |
| 111 | + collector.shutdown() |
| 112 | + |
| 113 | + |
| 114 | +if __name__ == "__main__": |
| 115 | + main() |
0 commit comments