|
| 1 | +import itertools |
| 2 | +import time |
| 3 | +from datetime import datetime |
| 4 | +from typing import List |
| 5 | +import json |
| 6 | +import numpy as np |
| 7 | +import argparse |
| 8 | +import re |
| 9 | +import torch |
| 10 | + |
| 11 | +from ..utils import REPO_PATH, add_path, get_output_dir, get_output_json, dump_output |
| 12 | + |
| 13 | +with add_path(REPO_PATH): |
| 14 | + from torchbenchmark.util.experiment.instantiator import list_models, load_model, TorchBenchModelConfig |
| 15 | + from torchbenchmark.util.experiment.metrics import TorchBenchModelMetrics, get_model_test_metrics |
| 16 | + import torchbenchmark.util.experiment.metrics |
| 17 | + |
| 18 | +BM_NAME = "api-coverage" |
| 19 | + |
| 20 | + |
| 21 | +def parse_func(func): |
| 22 | + if hasattr(func, '__module__'): |
| 23 | + module_name = func.__module__ |
| 24 | + func_name = func.__name__ |
| 25 | + else: |
| 26 | + if hasattr(func, '__qualname__'): |
| 27 | + func_name = func.__qualname__ |
| 28 | + module_name = '' |
| 29 | + else: |
| 30 | + if type(func) == torch._C.Generator: |
| 31 | + func_name = 'torch._C.Generator' |
| 32 | + module_name = '' |
| 33 | + else: |
| 34 | + raise RuntimeError("no matched module and func name: ", func, type(func)) |
| 35 | + return module_name, func_name |
| 36 | + |
| 37 | + |
| 38 | +def generate_API_list(): |
| 39 | + tmp_api_list = set() |
| 40 | + raw_all_apis = set(torch.overrides.get_testing_overrides().keys()) |
| 41 | + # collect all items' attribute `module` to a list |
| 42 | + for item in raw_all_apis: |
| 43 | + module_name, func_name = parse_func(item) |
| 44 | + # if (module_name, func_name) in api_list: |
| 45 | + # print("duplicated: ", (module_name, func_name)) |
| 46 | + tmp_api_list.add((module_name, func_name)) |
| 47 | + ignored_funcs = set([_ for _ in torch.overrides.get_ignored_functions() if _ not in [True, False]]) |
| 48 | + tmp_ignored_api_list = set() |
| 49 | + for item in ignored_funcs: |
| 50 | + module_name, func_name = parse_func(item) |
| 51 | + tmp_ignored_api_list.add((module_name, func_name)) |
| 52 | + return tmp_api_list, tmp_ignored_api_list |
| 53 | + |
| 54 | +API_LIST, IGNORED_API_LIST = generate_API_list() |
| 55 | + |
| 56 | + |
| 57 | +class CoverageMode(torch.overrides.TorchFunctionMode): |
| 58 | + |
| 59 | + def __init__(self, model='', output_file=None): |
| 60 | + self.model = model |
| 61 | + self.seen = set() |
| 62 | + self.api_used = set() |
| 63 | + self.output_file = output_file |
| 64 | + self.api_need_support = set() |
| 65 | + |
| 66 | + def check_func_in_APIs(self, func): |
| 67 | + module_name, func_name = parse_func(func) |
| 68 | + if (module_name, func_name) not in API_LIST: |
| 69 | + if (module_name, func_name) not in IGNORED_API_LIST and module_name != 'torch._ops.profiler': |
| 70 | + new_pair = (module_name, func_name) |
| 71 | + if new_pair not in self.api_need_support: |
| 72 | + # debugging purpose |
| 73 | + # print("not in API_LIST or IGNORED_API_LIST: (%s, %s)" % (module_name, func_name)) |
| 74 | + self.api_need_support.add((module_name, func_name)) |
| 75 | + else: |
| 76 | + self.api_used.add((module_name, func_name)) |
| 77 | + # debug |
| 78 | + # print("in APIs: ", (module_name, func_name)) |
| 79 | + |
| 80 | + def get_api_coverage_rate(self): |
| 81 | + return len(self.api_used) / len(API_LIST) |
| 82 | + |
| 83 | + def __torch_function__(self, func, types, args=(), kwargs=None): |
| 84 | + self.seen.add(func) |
| 85 | + if kwargs is None: |
| 86 | + kwargs = {} |
| 87 | + self.check_func_in_APIs(func) |
| 88 | + return func(*args, **kwargs) |
| 89 | + |
| 90 | + def commit(self): |
| 91 | + if self.output_file: |
| 92 | + with open(self.output_file, 'a') as f: |
| 93 | + for api in self.api_used: |
| 94 | + f.write("%s,%s\n" % (api[0], api[1])) |
| 95 | + |
| 96 | + def update_api_used(self, output: set): |
| 97 | + for api in self.api_used: |
| 98 | + output.add(api) |
| 99 | + |
| 100 | + def update_need_support(self, output: set): |
| 101 | + for api in self.api_need_support: |
| 102 | + output.add(api) |
| 103 | + |
| 104 | + |
| 105 | +def generate_model_config(model_name: str) -> List[TorchBenchModelConfig]: |
| 106 | + devices = ["cpu", "cuda"] |
| 107 | + tests = ["train", "eval"] |
| 108 | + cfgs = itertools.product(*[devices, tests]) |
| 109 | + result = [TorchBenchModelConfig( |
| 110 | + name=model_name, |
| 111 | + device=device, |
| 112 | + test=test, |
| 113 | + batch_size=None, |
| 114 | + jit=False, |
| 115 | + extra_args=[], |
| 116 | + extra_env=None, |
| 117 | + ) for device, test in cfgs] |
| 118 | + return result |
| 119 | + |
| 120 | + |
| 121 | +def parse_args(args: List[str]): |
| 122 | + parser = argparse.ArgumentParser() |
| 123 | + parser.add_argument("-m", "--models", default="", |
| 124 | + help="Specify the models to run, default (empty) runs all models.") |
| 125 | + parser.add_argument("-d", "--device", default="cuda", help="Specify the device.") |
| 126 | + parser.add_argument("-t", "--test", default="eval,train", help="Specify the test.") |
| 127 | + parser.add_argument("-o", "--output", type=str, help="The default output json file.") |
| 128 | + args = parser.parse_args(args) |
| 129 | + return args |
| 130 | + |
| 131 | + |
| 132 | +def generate_filter(args: argparse.Namespace): |
| 133 | + allowed_models = args.models |
| 134 | + if allowed_models: |
| 135 | + allowed_models = allowed_models.split(",") if "," in allowed_models else [allowed_models] |
| 136 | + allowed_devices = args.device |
| 137 | + allowed_devices = allowed_devices.split(",") if "," in allowed_devices else [allowed_devices] |
| 138 | + allowed_tests = args.test |
| 139 | + allowed_tests = allowed_tests.split(",") if "," in allowed_tests else [allowed_tests] |
| 140 | + |
| 141 | + def cfg_filter(cfg: TorchBenchModelConfig) -> bool: |
| 142 | + if cfg.device in allowed_devices and cfg.test in allowed_tests: |
| 143 | + if not allowed_models: |
| 144 | + return True |
| 145 | + else: |
| 146 | + return cfg.name in allowed_models |
| 147 | + return False |
| 148 | + return cfg_filter |
| 149 | + |
| 150 | + |
| 151 | +def run(args: List[str]): |
| 152 | + args = parse_args(args) |
| 153 | + output_dir = get_output_dir(BM_NAME) |
| 154 | + models = list_models() |
| 155 | + cfgs = list(itertools.chain(*map(generate_model_config, models))) |
| 156 | + cfg_filter = generate_filter(args) |
| 157 | + torchbenchmark.util.experiment.metrics.BENCHMARK_ITERS = 1 |
| 158 | + torchbenchmark.util.experiment.metrics.WARMUP_ROUNDS = 0 |
| 159 | + single_round_result = [] |
| 160 | + api_used = set() |
| 161 | + api_need_support = set() |
| 162 | + for cfg in filter(cfg_filter, cfgs): |
| 163 | + try: |
| 164 | + # load the model instance within the same process |
| 165 | + model = load_model(cfg) |
| 166 | + # get the model test metrics |
| 167 | + with CoverageMode('', '') as coverage: |
| 168 | + try: |
| 169 | + get_model_test_metrics(model, metrics=["latencies"]) |
| 170 | + finally: |
| 171 | + coverage.update_api_used(api_used) |
| 172 | + coverage.update_need_support(api_need_support) |
| 173 | + except NotImplementedError: |
| 174 | + # some models don't implement the test specified |
| 175 | + single_round_result.append({ |
| 176 | + 'cfg': cfg.__dict__, |
| 177 | + 'raw_metrics': "NotImplemented", |
| 178 | + }) |
| 179 | + except RuntimeError as e: |
| 180 | + single_round_result.append({ |
| 181 | + 'cfg': cfg.__dict__, |
| 182 | + 'raw_metrics': f"RuntimeError: {e}", |
| 183 | + }) |
| 184 | + |
| 185 | + # reduce full results to metrics |
| 186 | + # log detailed results in the .userbenchmark/model-stableness/logs/ directory |
| 187 | + log_dir = output_dir.joinpath("logs") |
| 188 | + log_dir.mkdir(exist_ok=True, parents=True) |
| 189 | + fname = "logs-{}.json".format(datetime.fromtimestamp(time.time()).strftime("%Y%m%d%H%M%S")) |
| 190 | + full_fname = log_dir.joinpath(fname) |
| 191 | + with open(full_fname, 'w') as f: |
| 192 | + json.dump(single_round_result, f, indent=4) |
| 193 | + # log the api coverage |
| 194 | + api_coverage_fname = log_dir.joinpath("%s-api_coverage.csv" % fname) |
| 195 | + missed_apis = API_LIST - api_used |
| 196 | + with open(api_coverage_fname, 'w') as f: |
| 197 | + f.write("API coverage rate: %d/%d = %.2f%%\n" % |
| 198 | + (len(api_used), len(API_LIST), len(api_used) / len(API_LIST) * 100)) |
| 199 | + f.write("=====Used APIs=====\n") |
| 200 | + f.write("module_name,func_name\n") |
| 201 | + for api in api_used: |
| 202 | + f.write("%s,%s\n" % (api[0], api[1])) |
| 203 | + f.write("=====Missed APIs=====\n") |
| 204 | + f.write("module_name,func_name\n") |
| 205 | + for api in missed_apis: |
| 206 | + f.write("%s,%s\n" % (api[0], api[1])) |
| 207 | + if api_need_support: |
| 208 | + api_need_support_fname = log_dir.joinpath("%s-api_need_support.csv" % fname) |
| 209 | + with open(api_need_support_fname, 'w') as f: |
| 210 | + f.write("APIs called but not in API_LIST and IGNORED_API_LIST\n") |
| 211 | + f.write("module_name,func_name\n") |
| 212 | + for api in api_need_support: |
| 213 | + f.write("%s,%s\n" % (api[0], api[1])) |
| 214 | + print("The detailed results are saved in %s" % api_coverage_fname) |
0 commit comments