@@ -8,7 +8,7 @@ The most convenient way to run these notebooks is via a docker container, which
88First, clone the repository:
99
1010```
11- git clone https://github.com/NVIDIA/Torch- TensorRT
11+ git clone https://github.com/pytorch/ TensorRT
1212```
1313
1414Next, navigate to the repo's root directory:
@@ -23,10 +23,10 @@ At this point, we recommend pulling the [PyTorch container](https://catalog.ngc.
2323from [ NVIDIA GPU Cloud] ( https://catalog.ngc.nvidia.com/ ) as follows:
2424
2525```
26- docker pull nvcr.io/nvidia/pytorch:21.12 -py3
26+ docker pull nvcr.io/nvidia/pytorch:22.05 -py3
2727```
2828
29- Replace ``` 21.12 ``` with a different string in the form ``` yy.mm ``` ,
29+ Replace ``` 22.05 ``` with a different string in the form ``` yy.mm ``` ,
3030where ``` yy ``` indicates the last two numbers of a calendar year, and
3131``` mm ``` indicates the month in two-digit numerical form, if you wish
3232to pull a different version of the container.
@@ -36,14 +36,18 @@ Therefore, you can run the container and the notebooks therein without
3636mounting the repo to the container. To do so, run
3737
3838```
39- docker run --gpus=all --rm -it --net=host --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 nvcr.io/nvidia/pytorch:21.12-py3 bash
39+ docker run --gpus=all --rm -it --net=host --ipc=host \
40+ --ulimit memlock=-1 --ulimit stack=67108864 \
41+ nvcr.io/nvidia/pytorch:22.05-py3 bash
4042```
4143
4244If, however, you wish for your work in the notebooks to persist, use the
4345``` -v ``` flag to mount the repo to the container as follows:
4446
4547```
46- docker run --gpus=all --rm -it -v $PWD:/Torch-TensorRT --net=host --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 nvcr.io/nvidia/pytorch:21.12-py3 bash
48+ docker run --gpus=all --rm -it -v $PWD:/Torch-TensorRT \
49+ --net=host --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 \
50+ nvcr.io/nvidia/pytorch:22.05-py3 bash
4751```
4852
4953### b. Building a Torch-TensorRT container from source
@@ -57,7 +61,9 @@ docker build -t torch_tensorrt -f ./docker/Dockerfile .
5761To run this container, enter the following command:
5862
5963```
60- docker run --gpus=all --rm -it -v $PWD:/Torch-TensorRT --net=host --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 torch_tensorrt:latest bash
64+ docker run --gpus=all --rm -it -v $PWD:/Torch-TensorRT \
65+ --net=host --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 \
66+ torch_tensorrt:latest bash
6167```
6268
6369### c. Running the notebooks inside the container
@@ -100,8 +106,3 @@ Within the container, the notebooks themselves are located at `/Torch-TensorRT/n
100106- [ vgg-qat.ipynb] ( vgg-qat.ipynb ) : Quantization Aware Trained models in INT8 using Torch-TensorRT
101107- [ EfficientNet-example.ipynb] ( EfficientNet-example.ipynb ) : Simple use of 3rd party PyTorch model library
102108- [ CitriNet-example.ipynb] ( CitriNet-example.ipynb ) : Optimizing the Nemo Citrinet acoustic model
103-
104-
105- ``` python
106-
107- ```
0 commit comments