|
5 | 5 | "id": "0be7dabf-cb34-4faf-abb1-e2c8e735beda", |
6 | 6 | "metadata": {}, |
7 | 7 | "source": [ |
8 | | - "# Implementing a warm-up period\n", |
| 8 | + "# Coding a warm-up period in SimPy\n", |
9 | 9 | "\n", |
10 | | - "We will implement warm-up as a single event that resets all of our results collection variables. \n", |
| 10 | + "## Why do you need a warm-up period?\n", |
11 | 11 | "\n", |
12 | | - "This is a simpler approach than including lots of if statements in `simpy` processes." |
| 12 | + "Typically when you are modelling a non-terminating system, you will need to deal with **initialisation bias**. That is the real system always has work-in-progress (e.g. patients in queues and in service), but the model starts from empty. One way to do this is to split the model's run length into warm-up and data collection periods. We discard all results in the warm-up period.\n", |
| 13 | + "\n", |
| 14 | + "> In this tutorial we will focus on coding a warm-up period rather than analysis to determine its length\n", |
| 15 | + "\n", |
| 16 | + "## But how do you code it?\n", |
| 17 | + "\n", |
| 18 | + "💪 We will implement warm-up as a **single event** that resets all of our results collection variables. \n", |
| 19 | + "\n", |
| 20 | + "> This is a simpler approach than including lots of if statements in `simpy` processes.\n", |
| 21 | + "\n", |
| 22 | + "## Illustrative example model\n", |
| 23 | + "\n", |
| 24 | + "We will use a very simple model for this example. This is a acute stroke pathway with a single arrival processes, a single type of resource, and a single treatment process. This is a non-terminating system. There are always patients in the system - it does not start up from empty\n", |
| 25 | + "\n", |
| 26 | + "\n", |
| 27 | + "" |
13 | 28 | ] |
14 | 29 | }, |
15 | 30 | { |
|
34 | 49 | }, |
35 | 50 | { |
36 | 51 | "cell_type": "code", |
37 | | - "execution_count": 25, |
| 52 | + "execution_count": 2, |
38 | 53 | "id": "ea3d507f-9e6d-4ff0-8b90-f9c63c8a8bdf", |
39 | 54 | "metadata": {}, |
40 | 55 | "outputs": [], |
|
212 | 227 | "id": "7ff9beae-89cc-419c-b584-c05b81086865", |
213 | 228 | "metadata": {}, |
214 | 229 | "source": [ |
215 | | - "## 🥵 Warm-up period" |
| 230 | + "## 🥵 Warm-up period\n", |
| 231 | + "\n", |
| 232 | + "The acute stroke pathway model starts from empty. As it is a non-terminating system our estimate of waiting time is biased due to the empty period at the start of the simulation. We can remove this initialisation bias using a warm-up period. \n", |
| 233 | + "\n", |
| 234 | + "We will implement a warm-up through an **event** that happens once in a single run of the model. The model will be run for the **warm-up period + results collection period**. At the end of the warm-up period an event will happen where all variables in the current experiment are reset (e.g. empty lists and set quantitative values to 0)." |
216 | 235 | ] |
217 | 236 | }, |
218 | 237 | { |
|
248 | 267 | "id": "94f0f9c5-22cb-493a-9f1f-4e2a8325beaa", |
249 | 268 | "metadata": {}, |
250 | 269 | "source": [ |
251 | | - "## 4. Pathway process logic\n", |
| 270 | + "## 4. Stroke pathway process logic\n", |
252 | 271 | "\n", |
253 | 272 | "The key things to recognise are \n", |
254 | 273 | "\n", |
|
309 | 328 | }, |
310 | 329 | { |
311 | 330 | "cell_type": "code", |
312 | | - "execution_count": 33, |
| 331 | + "execution_count": 8, |
313 | 332 | "id": "b3e686ce-5371-4471-a052-b9d43309bc85", |
314 | 333 | "metadata": {}, |
315 | 334 | "outputs": [], |
|
352 | 371 | }, |
353 | 372 | { |
354 | 373 | "cell_type": "code", |
355 | | - "execution_count": 34, |
| 374 | + "execution_count": 9, |
356 | 375 | "id": "0d0ea6cf-7d95-4d2c-9690-fcdbdae35d84", |
357 | 376 | "metadata": {}, |
358 | 377 | "outputs": [], |
|
424 | 443 | }, |
425 | 444 | { |
426 | 445 | "cell_type": "code", |
427 | | - "execution_count": 35, |
| 446 | + "execution_count": 22, |
428 | 447 | "id": "caf52390-5455-4fa1-bb22-60b5b91ad8d0", |
429 | 448 | "metadata": {}, |
430 | 449 | "outputs": [ |
|
436 | 455 | "3.29: Stroke arrival.\n", |
437 | 456 | "3.29: Patient 1 admitted to acute ward.(waited 0.00 days)\n", |
438 | 457 | "4.06: Stroke arrival.\n", |
439 | | - "4.06: Patient 2 admitted to acute ward.(waited 0.00 days)\n" |
| 458 | + "4.06: Patient 2 admitted to acute ward.(waited 0.00 days)\n", |
| 459 | + "5.31: Stroke arrival.\n", |
| 460 | + "5.31: Patient 3 admitted to acute ward.(waited 0.00 days)\n", |
| 461 | + "5.53: Stroke arrival.\n", |
| 462 | + "5.53: Patient 4 admitted to acute ward.(waited 0.00 days)\n", |
| 463 | + "5.76: Stroke arrival.\n", |
| 464 | + "5.76: Patient 5 admitted to acute ward.(waited 0.00 days)\n" |
440 | 465 | ] |
441 | 466 | }, |
442 | 467 | { |
|
445 | 470 | "{'mean_acute_wait': 0.0}" |
446 | 471 | ] |
447 | 472 | }, |
448 | | - "execution_count": 35, |
| 473 | + "execution_count": 22, |
449 | 474 | "metadata": {}, |
450 | 475 | "output_type": "execute_result" |
451 | 476 | } |
452 | 477 | ], |
453 | 478 | "source": [ |
454 | 479 | "TRACE = True\n", |
455 | 480 | "experiment = Experiment()\n", |
456 | | - "results = single_run(experiment, rep=0, wu_period=0.0, rc_period=5.0)\n", |
| 481 | + "results = single_run(experiment, rep=0, wu_period=0.0, rc_period=6.0)\n", |
457 | 482 | "results" |
458 | 483 | ] |
459 | 484 | }, |
460 | 485 | { |
461 | 486 | "cell_type": "code", |
462 | | - "execution_count": 36, |
| 487 | + "execution_count": 23, |
463 | 488 | "id": "ddedb4f1-207d-4295-9ae4-c49b2c7cdcaf", |
464 | 489 | "metadata": {}, |
465 | 490 | "outputs": [ |
466 | 491 | { |
467 | 492 | "data": { |
468 | 493 | "text/plain": [ |
469 | | - "{'n_arrivals': 2, 'waiting_acute': [0.0, 0.0]}" |
| 494 | + "{'n_arrivals': 5, 'waiting_acute': [0.0, 0.0, 0.0, 0.0, 0.0]}" |
470 | 495 | ] |
471 | 496 | }, |
472 | | - "execution_count": 36, |
| 497 | + "execution_count": 23, |
473 | 498 | "metadata": {}, |
474 | 499 | "output_type": "execute_result" |
475 | 500 | } |
|
484 | 509 | "id": "660ea2e1-d9c2-4355-876c-43dfd9dab0fe", |
485 | 510 | "metadata": {}, |
486 | 511 | "source": [ |
487 | | - "## Quick check 1: Include a warm-up" |
| 512 | + "## Quick check 2: Include a warm-up" |
488 | 513 | ] |
489 | 514 | }, |
490 | 515 | { |
491 | 516 | "cell_type": "code", |
492 | | - "execution_count": 37, |
| 517 | + "execution_count": 24, |
493 | 518 | "id": "72b5284a-1fcb-4126-b663-c0ef0002e4bf", |
494 | 519 | "metadata": {}, |
495 | 520 | "outputs": [ |
|
516 | 541 | "{'mean_acute_wait': 0.0}" |
517 | 542 | ] |
518 | 543 | }, |
519 | | - "execution_count": 37, |
| 544 | + "execution_count": 24, |
520 | 545 | "metadata": {}, |
521 | 546 | "output_type": "execute_result" |
522 | 547 | } |
|
530 | 555 | }, |
531 | 556 | { |
532 | 557 | "cell_type": "code", |
533 | | - "execution_count": 38, |
| 558 | + "execution_count": 25, |
534 | 559 | "id": "7f5e282b-0f41-41df-bdca-f128e7d418c1", |
535 | 560 | "metadata": {}, |
536 | 561 | "outputs": [ |
|
540 | 565 | "{'n_arrivals': 3, 'waiting_acute': [0.0, 0.0, 0.0]}" |
541 | 566 | ] |
542 | 567 | }, |
543 | | - "execution_count": 38, |
| 568 | + "execution_count": 25, |
544 | 569 | "metadata": {}, |
545 | 570 | "output_type": "execute_result" |
546 | 571 | } |
|
0 commit comments