|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "from streamz.dataframe import DataFrame\n", |
| 10 | + "import cudf" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "markdown", |
| 15 | + "metadata": {}, |
| 16 | + "source": [ |
| 17 | + "# Basic example" |
| 18 | + ] |
| 19 | + }, |
| 20 | + { |
| 21 | + "cell_type": "code", |
| 22 | + "execution_count": null, |
| 23 | + "metadata": {}, |
| 24 | + "outputs": [], |
| 25 | + "source": [ |
| 26 | + "\n", |
| 27 | + "cu_df = cudf.DataFrame({'x': np.arange(10, dtype=float)+10, 'y': [1.0, 2.0] * 5})\n", |
| 28 | + "\n", |
| 29 | + "sdf = DataFrame(example=cu_df)\n", |
| 30 | + "\n", |
| 31 | + "L = sdf.window(n=15).x.sum().stream.sink_to_list()" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "code", |
| 36 | + "execution_count": null, |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [], |
| 39 | + "source": [ |
| 40 | + "sdf.emit(cu_df.iloc[:8])\n", |
| 41 | + "sdf.emit(cu_df)\n", |
| 42 | + "sdf.emit(cu_df)" |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "code", |
| 47 | + "execution_count": null, |
| 48 | + "metadata": {}, |
| 49 | + "outputs": [], |
| 50 | + "source": [ |
| 51 | + "print(L[0])\n", |
| 52 | + "print(L[1])\n", |
| 53 | + "print(L[2])" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "markdown", |
| 58 | + "metadata": {}, |
| 59 | + "source": [ |
| 60 | + "# Advanced example\n", |
| 61 | + "The following pipeline reads json encoded strings from Kafka in batches and process them on GPUs and write the result back to a different Kafka topic. This pipeline can be easily extended to run on Dask Stream as well.\n", |
| 62 | + "Note: Uses cudf 0.8" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "code", |
| 67 | + "execution_count": null, |
| 68 | + "metadata": {}, |
| 69 | + "outputs": [], |
| 70 | + "source": [ |
| 71 | + "# read messages from kafka and create a stream\n", |
| 72 | + "\n", |
| 73 | + "consume_topic = \"my-topic\"\n", |
| 74 | + "produce_topic = \"my-out-topic\"\n", |
| 75 | + "bootstrap_servers = 'localhost:9092'\n", |
| 76 | + "consumer_conf = {'bootstrap.servers': bootstrap_servers,\n", |
| 77 | + " 'group.id': 'group-123', 'session.timeout.ms': 600}\n", |
| 78 | + "producer_conf = {'bootstrap.servers': bootstrap_servers}\n", |
| 79 | + "\n", |
| 80 | + "stream = Stream.from_kafka_batched(consume_topic, consumer_conf, poll_interval='10s',\n", |
| 81 | + " npartitions=10, asynchronous=True)" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "code", |
| 86 | + "execution_count": null, |
| 87 | + "metadata": {}, |
| 88 | + "outputs": [], |
| 89 | + "source": [ |
| 90 | + "# convert batch of encoded json strings to gpu dataframes\n", |
| 91 | + "cudf_stream = stream\\\n", |
| 92 | + " .map(lambda msgs: \"\\n\".join([msg.decode('utf-8') for msg in msgs]))\\\n", |
| 93 | + " .map(cudf.read_json, lines=True)\n", |
| 94 | + "\n", |
| 95 | + "# create a streamz dataframe from the above stream and sample dataframe\n", |
| 96 | + "cudf_example = cudf.DataFrame({'x': np.arange(10, dtype=float)+10, 'y': [1.0, 2.0] * 5})\n", |
| 97 | + "stdf = DataFrame(cudf_stream, example=cudf_example)\n", |
| 98 | + "\n", |
| 99 | + "# perform aggregation and write to kafka\n", |
| 100 | + "stdf.window(n=15).x.mean().stream.to_kafka(produce_topic, producer_conf)\n" |
| 101 | + ] |
| 102 | + } |
| 103 | + ], |
| 104 | + "metadata": { |
| 105 | + "kernelspec": { |
| 106 | + "display_name": "Python 3", |
| 107 | + "language": "python", |
| 108 | + "name": "python3" |
| 109 | + }, |
| 110 | + "language_info": { |
| 111 | + "codemirror_mode": { |
| 112 | + "name": "ipython", |
| 113 | + "version": 3 |
| 114 | + }, |
| 115 | + "file_extension": ".py", |
| 116 | + "mimetype": "text/x-python", |
| 117 | + "name": "python", |
| 118 | + "nbconvert_exporter": "python", |
| 119 | + "pygments_lexer": "ipython3", |
| 120 | + "version": "3.6.3" |
| 121 | + } |
| 122 | + }, |
| 123 | + "nbformat": 4, |
| 124 | + "nbformat_minor": 2 |
| 125 | +} |
0 commit comments