@@ -547,6 +547,7 @@ <h2>Project Ideas</h2>
547547 </ td >
548548 < tr > < td colspan ="2 " class ="good "> Status: Ideas page in progress</ td > </ tr >
549549</ tr >
550+
550551< tr >
551552 <!-- Logo -->
552553 < td rowspan ="4 " class ="logo ">
@@ -581,10 +582,70 @@ <h2>Project Ideas</h2>
581582 < tr > < td > < a href ="http://kivy.org "> Website</ a > |
582583 < a href ="https://kivy.org/docs/contact.html "> Contact</ a > |
583584 < a href ="https://kivy.org/docs/gsoc.html "> Ideas Page</ a >
585+ </ td >
586+ < tr > < td colspan ="2 " class ="good "> Status: Ideas page in progress</ td > </ tr >
587+ </ tr >
588+
589+ < tr >
590+
591+ <!-- Logo -->
592+ < td rowspan ="4 " class ="logo ">
593+ < img src ="http://www.hydra-cg.com/img/logo.png " width ="128px "> </ td >
594+ <!-- Info -->
595+ < td > < h4 > HYDRA W3C Group</ h4 > </ td >
596+ < tr > < td > A Python server/middleware to automate Web APIs navigation using intelligent clients. This project aims to:
597+ < ul >
598+ < li > create a metadata-powered REST API leveraging HYDRA framework,</ li >
599+ < li > define a design for future development of client/server interactions using smart clients,</ li >
600+ < li > use graphs and machine-learning to solve complex queries using HYDRA framework,</ li >
601+ < li > define a middleware (low-level client) to collect requests from external
602+ clients and provide the requested data using reasoning and machine-learning algorithms</ li > .
603+ </ ul >
604+ </ td > </ tr >
605+ < tr > < td > < a href ="http://www.hydra-cg.com/ "> Website</ a > |
606+ < a href ="https://www.w3.org/community/hydra/ "> Contact</ a > |
607+ < a href ="http://hydra-gsoc.appspot.com/s "> Ideas Page</ a >
608+ </ td >
609+ < tr > < td colspan ="2 " class ="good "> Status: Ideas page in progress</ td > </ tr >
610+ </ tr >
611+
584612
585613 </ td >
586614 < tr > < td colspan ="2 " class ="good "> Status: Ideas page in progress</ td > </ tr >
587615</ tr >
616+
617+ <!-- Logo -->
618+ < td rowspan ="4 " class ="logo ">
619+ < img src ="http://www.statsmodels.org/devel/_static/statsmodels_hybi_banner.png "
620+ width ="300px "> </ td >
621+ <!-- Info -->
622+ < td > < h4 > Statsmodels</ h4 > </ td >
623+ < tr > < td > Statsmodels is a general purpose Python package for data analysis, statistics and econometrics </ td > </ tr >
624+ < tr > < td > < a href ="http://www.statsmodels.org/devel/ "> Website</ a > |
625+ < a href ="http://groups.google.com/group/pystatsmodels "> Contact</ a > |
626+ < a href ="https://github.com/statsmodels/statsmodels/wiki/Google-Summer-of-Code-2017 "> Ideas Page</ a >
627+ </ td >
628+ < tr > < td colspan ="2 " class ="good "> Status: Ideas page in progress</ td > </ tr >
629+ </ tr >
630+
631+ < tr >
632+ <!-- Logo -->
633+ < td rowspan ="4 " class ="logo ">
634+ < img src ="http://91.68.209.10/bmi/martinos.org/mne/stable/_static/mne_logo.png "
635+ width ="256px "> </ td >
636+ <!-- Info -->
637+ < td > < h4 > MNE-Python</ h4 > </ td >
638+ < tr > < td > MNE is a free and open source software designed for processing electroencephalography (EEG) and magnetoencephalography (MEG) data. EEG and MEG data analysis requires advanced numerics, signal processing, statistics and dedicated visualization tools. MNE-Python is a pure Python package built on top of numpy, scipy, matplotlib and scikit-learn.
639+ </ td > </ tr >
640+ < tr >
641+ < td >
642+ < a href ="http://martinos.org/mne/ "> Website</ a > |
643+ < a href ="http://github.com/mne-tools/mne-python "> Contact</ a > |
644+ < a href ="https://github.com/mne-tools/mne-python/wiki/GSOC-Ideas "> Ideas Page</ a >
645+ </ td >
646+ < tr > < td colspan ="2 " class ="good "> Status: Ideas page in progress</ td > </ tr >
647+ </ tr >
648+
588649</ table >
589650
590651< a name ="schedule " />
0 commit comments