@@ -23,8 +23,8 @@ class Delaunay(W):
2323 a graph from the input set of points. Will be slower without numba,
2424 and will warn if this is missing.
2525
26- Arguments
27- ---------
26+ Parameters
27+ ----------
2828 coordinates : array of points, (N,2)
2929 numpy array of coordinates containing locations to compute the
3030 delaunay triangulation
@@ -79,8 +79,8 @@ def from_dataframe(cls, df, **kwargs):
7979 Polygons or lines must be converted to points (e.g. using
8080 df.geometry.centroid).
8181
82- Arguments
83- ---------
82+ Parameters
83+ ----------
8484 df : geopandas.GeoDataFrame
8585 GeoDataFrame containing points to construct the Delaunay
8686 Triangulation.
@@ -114,13 +114,14 @@ class Gabriel(Delaunay):
114114
115115 For a link (i,j) connecting node i to j in the Delaunay triangulation
116116 to be retained in the Gabriel graph, it must pass a point set exclusion test:
117+
117118 1. Construct the circle C_ij containing link (i,j) as its diameter
118119 2. If any other node k is contained within C_ij, then remove link (i,j)
119120 from the graph.
120121 3. Once all links are evaluated, the remaining graph is the Gabriel graph.
121122
122- Arguments
123- ---------
123+ Parameters
124+ ----------
124125 coordinates : array of points, (N,2)
125126 numpy array of coordinates containing locations to compute the
126127 delaunay triangulation
@@ -159,8 +160,8 @@ class Relative_Neighborhood(Delaunay):
159160 This means that the points are at least as close to one another
160161 as they are to any other point.
161162
162- Arguments
163- ---------
163+ Parameters
164+ ----------
164165 coordinates : array of points, (N,2)
165166 numpy array of coordinates containing locations to compute the
166167 delaunay triangulation
0 commit comments