@@ -90,15 +90,19 @@ def print_coefficients(self) -> None:
9090 ... time_variable_name="t",
9191 ... group_variable_name="group",
9292 ... model=cp.pymc_models.LinearRegression(
93- ... sample_kwargs={"random_seed": seed, "progressbar": False}),
93+ ... sample_kwargs={
94+ ... "draws": 2000,
95+ ... "random_seed": seed,
96+ ... "progressbar": False
97+ ... }),
9498 ... )
95- >>> result.print_coefficients()
99+ >>> result.print_coefficients() # doctest: +NUMBER
96100 Model coefficients:
97- Intercept 1.08 , 94% HDI [1.03 , 1.13 ]
98- post_treatment[T.True] 0.98 , 94% HDI [0.91 , 1.06 ]
99- group 0.16 , 94% HDI [0.09 , 0.23 ]
100- group:post_treatment[T.True] 0.51 , 94% HDI [0.41 , 0.61 ]
101- sigma 0.08 , 94% HDI [0.07 , 0.10 ]
101+ Intercept 1.0 , 94% HDI [1.0 , 1.1 ]
102+ post_treatment[T.True] 0.9 , 94% HDI [0.9 , 1.0 ]
103+ group 0.1 , 94% HDI [0.0 , 0.2 ]
104+ group:post_treatment[T.True] 0.5 , 94% HDI [0.4 , 0.6 ]
105+ sigma 0.0 , 94% HDI [0.0 , 0.1 ]
102106 """
103107 print ("Model coefficients:" )
104108 coeffs = az .extract (self .idata .posterior , var_names = "beta" )
@@ -352,22 +356,23 @@ def summary(self) -> None:
352356 ... formula="actual ~ 0 + a + b + c + d + e + f + g",
353357 ... model=cp.pymc_models.WeightedSumFitter(
354358 ... sample_kwargs={
359+ ... "draws": 2000,
355360 ... "target_accept": 0.95,
356361 ... "random_seed": seed,
357362 ... "progressbar": False,
358363 ... }
359364 ... ),
360365 ... )
361- >>> result.summary()
366+ >>> result.summary() # doctest: +NUMBER
362367 ==================================Pre-Post Fit==================================
363368 Formula: actual ~ 0 + a + b + c + d + e + f + g
364369 Model coefficients:
365- a 0.33 , 94% HDI [0.30, 0.38]
370+ a 0.34 , 94% HDI [0.30, 0.38]
366371 b 0.05, 94% HDI [0.01, 0.09]
367372 c 0.31, 94% HDI [0.26, 0.35]
368373 d 0.06, 94% HDI [0.01, 0.10]
369374 e 0.02, 94% HDI [0.00, 0.06]
370- f 0.20 , 94% HDI [0.12 , 0.26]
375+ f 0.19 , 94% HDI [0.11 , 0.26]
371376 g 0.04, 94% HDI [0.00, 0.08]
372377 sigma 0.26, 94% HDI [0.22, 0.30]
373378 """
@@ -777,6 +782,7 @@ def summary(self) -> None:
777782 ... group_variable_name="group",
778783 ... model=cp.pymc_models.LinearRegression(
779784 ... sample_kwargs={
785+ ... "draws": 2000,
780786 ... "target_accept": 0.95,
781787 ... "random_seed": seed,
782788 ... "progressbar": False,
@@ -788,12 +794,12 @@ def summary(self) -> None:
788794 Formula: y ~ 1 + group*post_treatment
789795 <BLANKLINE>
790796 Results:
791- Causal impact = 0.51, $CI_{94%}$[0.41, 0.61 ]
797+ Causal impact = 0.51, $CI_{94%}$[0.41, 0.60 ]
792798 Model coefficients:
793- Intercept 1.08, 94% HDI [1.03, 1.13 ]
794- post_treatment[T.True] 0.98 , 94% HDI [0.92, 1.05]
799+ Intercept 1.08, 94% HDI [1.03, 1.12 ]
800+ post_treatment[T.True] 0.99 , 94% HDI [0.92, 1.05]
795801 group 0.16, 94% HDI [0.09, 0.23]
796- group:post_treatment[T.True] 0.51, 94% HDI [0.41, 0.61 ]
802+ group:post_treatment[T.True] 0.51, 94% HDI [0.41, 0.60 ]
797803 sigma 0.08, 94% HDI [0.07, 0.10]
798804 """
799805
@@ -1018,6 +1024,7 @@ def summary(self) -> None:
10181024 ... formula="y ~ 1 + x + treated + x:treated",
10191025 ... model=cp.pymc_models.LinearRegression(
10201026 ... sample_kwargs={
1027+ ... "draws": 2000,
10211028 ... "target_accept": 0.95,
10221029 ... "random_seed": seed,
10231030 ... "progressbar": False,
@@ -1035,9 +1042,9 @@ def summary(self) -> None:
10351042 Discontinuity at threshold = 0.91
10361043 Model coefficients:
10371044 Intercept 0.09, 94% HDI [-0.00, 0.17]
1038- treated[T.True] 2.45, 94% HDI [1.66 , 3.28]
1045+ treated[T.True] 2.45, 94% HDI [1.64 , 3.28]
10391046 x 1.32, 94% HDI [1.14, 1.50]
1040- x:treated[T.True] -3.08 , 94% HDI [-4.17 , -2.05 ]
1047+ x:treated[T.True] -3.09 , 94% HDI [-4.16 , -2.03 ]
10411048 sigma 0.36, 94% HDI [0.31, 0.41]
10421049 """
10431050
@@ -1233,23 +1240,24 @@ def summary(self) -> None:
12331240 ... pretreatment_variable_name="pre",
12341241 ... model=cp.pymc_models.LinearRegression(
12351242 ... sample_kwargs={
1243+ ... "draws": 2000,
12361244 ... "target_accept": 0.95,
12371245 ... "random_seed": seed,
12381246 ... "progressbar": False,
12391247 ... }
12401248 ... )
12411249 ... )
1242- >>> result.summary()
1250+ >>> result.summary() # doctest: +NUMBER
12431251 ==================Pretest/posttest Nonequivalent Group Design===================
12441252 Formula: post ~ 1 + C(group) + pre
12451253 <BLANKLINE>
12461254 Results:
1247- Causal impact = 1.88 , $CI_{94%}$[1.69 , 2.07 ]
1255+ Causal impact = 1.8 , $CI_{94%}$[1.6 , 2.0 ]
12481256 Model coefficients:
1249- Intercept -0.47 , 94% HDI [-1.16 , 0.24 ]
1250- C(group)[T.1] 1.88 , 94% HDI [1.69 , 2.07 ]
1251- pre 1.05 , 94% HDI [0.98 , 1.12 ]
1252- sigma 0.51 , 94% HDI [0.46 , 0.56 ]
1257+ Intercept -0.4 , 94% HDI [-1.2 , 0.2 ]
1258+ C(group)[T.1] 1.8 , 94% HDI [1.6 , 2.0 ]
1259+ pre 1.0 , 94% HDI [0.9 , 1.1 ]
1260+ sigma 0.5 , 94% HDI [0.4 , 0.5 ]
12531261
12541262 """
12551263
@@ -1317,9 +1325,9 @@ class InstrumentalVariable(ExperimentalDesign):
13171325 >>> y = 2 + 3 * X + 3 * e1
13181326 >>> test_data = pd.DataFrame({"y": y, "X": X, "Z": Z})
13191327 >>> sample_kwargs = {
1320- ... "tune": 10 ,
1321- ... "draws": 20 ,
1322- ... "chains": 4 ,
1328+ ... "tune": 1 ,
1329+ ... "draws": 5 ,
1330+ ... "chains": 1 ,
13231331 ... "cores": 4,
13241332 ... "target_accept": 0.95,
13251333 ... "progressbar": False,
0 commit comments