@@ -1660,8 +1660,8 @@ def plot_ATE(self, idata=None, method=None, prop_draws=100, ate_draws=300):
16601660
16611661 def plot_weights (bins , top0 , top1 , ax , color = "population" ):
16621662 colors_dict = {
1663- "population" : ["lightcoral " , "skyblue" , 0.6 ],
1664- "pseudo_population" : ["purple " , "purple " , 0.1 ],
1663+ "population" : ["orange " , "skyblue" , 0.6 ],
1664+ "pseudo_population" : ["grey " , "grey " , 0.1 ],
16651665 }
16661666
16671667 ax .axhline (0 , c = "gray" , linewidth = 1 )
@@ -1724,16 +1724,17 @@ def make_hists(idata, i, axs, method=method):
17241724 axs [0 ].set_title (
17251725 "Draws from the Posterior \n Propensity Scores Distribution" , fontsize = 20
17261726 )
1727+ axs [0 ].set_xlabel ("Propensity Scores" )
17271728 custom_lines = [
17281729 Line2D ([0 ], [0 ], color = "skyblue" , lw = 2 ),
1729- Line2D ([0 ], [0 ], color = "lightcoral " , lw = 2 ),
1730- Line2D ([0 ], [0 ], color = "purple " , lw = 2 ),
1730+ Line2D ([0 ], [0 ], color = "orange " , lw = 2 ),
1731+ Line2D ([0 ], [0 ], color = "grey " , lw = 2 ),
17311732 Line2D ([0 ], [0 ], color = "black" , lw = 2 , linestyle = "--" ),
17321733 ]
17331734
17341735 axs [0 ].legend (
17351736 custom_lines ,
1736- ["Control PS" , "Treatment PS" , "Weighted Pseudo Population" , "Extreme PS" ],
1737+ ["Treatment PS" , "Control PS" , "Weighted Pseudo Population" , "Extreme PS" ],
17371738 )
17381739
17391740 [make_hists (idata , i , axs ) for i in range (prop_draws )]
@@ -1755,9 +1756,10 @@ def make_hists(idata, i, axs, method=method):
17551756 ec = "black" ,
17561757 bins = 10 ,
17571758 alpha = 0.6 ,
1758- color = "lightcoral " ,
1759+ color = "orange " ,
17591760 )
17601761 axs [1 ].legend ()
1762+ axs [1 ].set_xlabel (self .outcome_variable )
17611763 axs [1 ].set_title (
17621764 f"The Outcomes \n Under the { method } re-weighting scheme" , fontsize = 20
17631765 )
@@ -1766,9 +1768,10 @@ def make_hists(idata, i, axs, method=method):
17661768 label = "ATE" ,
17671769 ec = "black" ,
17681770 bins = 10 ,
1769- color = "slateblue " ,
1771+ color = "grey " ,
17701772 alpha = 0.6 ,
17711773 )
1774+ axs [2 ].set_xlabel ("Difference" )
17721775 axs [2 ].axvline (ate_df ["ATE" ].mean (), label = "E(ATE)" )
17731776 axs [2 ].legend ()
17741777 axs [2 ].set_title ("Average Treatment Effect" , fontsize = 20 )
@@ -1832,7 +1835,7 @@ def plot_balance_ecdf(self, covariate, idata=None, weighting_scheme=None):
18321835 np .linspace (0 , 1 , 1000 ), raw_trt , color = "skyblue" , label = "Raw Treated"
18331836 )
18341837 axs [0 ].plot (
1835- np .linspace (0 , 1 , 1000 ), raw_ntrt , color = "lightcoral " , label = "Raw Control"
1838+ np .linspace (0 , 1 , 1000 ), raw_ntrt , color = "orange " , label = "Raw Control"
18361839 )
18371840 axs [0 ].set_title (f"ECDF \n Raw: { covariate } " )
18381841 axs [1 ].set_title (
@@ -1844,7 +1847,7 @@ def plot_balance_ecdf(self, covariate, idata=None, weighting_scheme=None):
18441847 axs [1 ].plot (
18451848 np .linspace (0 , 1 , 1000 ),
18461849 w_ntrt ,
1847- color = "lightcoral " ,
1850+ color = "orange " ,
18481851 label = "Reweighted Control" ,
18491852 )
18501853 axs [1 ].set_xlabel ("Quantiles" )
0 commit comments