|
2 | 2 | "cells": [ |
3 | 3 | { |
4 | 4 | "cell_type": "code", |
5 | | - "execution_count": 357, |
| 5 | + "execution_count": 378, |
6 | 6 | "metadata": {}, |
7 | 7 | "outputs": [ |
8 | 8 | { |
|
50 | 50 | }, |
51 | 51 | { |
52 | 52 | "cell_type": "code", |
53 | | - "execution_count": 325, |
| 53 | + "execution_count": 376, |
54 | 54 | "metadata": {}, |
55 | 55 | "outputs": [ |
56 | 56 | { |
|
83 | 83 | " <tbody>\n", |
84 | 84 | " <tr>\n", |
85 | 85 | " <th>0</th>\n", |
86 | | - " <td>1.374096</td>\n", |
87 | | - " <td>0.373163</td>\n", |
88 | | - " <td>1</td>\n", |
89 | | - " <td>6.054919</td>\n", |
| 86 | + " <td>-0.700611</td>\n", |
| 87 | + " <td>0.215690</td>\n", |
| 88 | + " <td>0</td>\n", |
| 89 | + " <td>-1.060506</td>\n", |
90 | 90 | " </tr>\n", |
91 | 91 | " <tr>\n", |
92 | 92 | " <th>1</th>\n", |
93 | | - " <td>1.051587</td>\n", |
94 | | - " <td>0.834493</td>\n", |
95 | | - " <td>0</td>\n", |
96 | | - " <td>2.927939</td>\n", |
| 93 | + " <td>0.880796</td>\n", |
| 94 | + " <td>1.082451</td>\n", |
| 95 | + " <td>1</td>\n", |
| 96 | + " <td>3.778433</td>\n", |
97 | 97 | " </tr>\n", |
98 | 98 | " <tr>\n", |
99 | 99 | " <th>2</th>\n", |
100 | | - " <td>-0.450553</td>\n", |
101 | | - " <td>0.232016</td>\n", |
| 100 | + " <td>-0.121070</td>\n", |
| 101 | + " <td>0.767333</td>\n", |
102 | 102 | " <td>0</td>\n", |
103 | | - " <td>-0.043942</td>\n", |
| 103 | + " <td>0.617862</td>\n", |
104 | 104 | " </tr>\n", |
105 | 105 | " <tr>\n", |
106 | 106 | " <th>3</th>\n", |
107 | | - " <td>0.720264</td>\n", |
108 | | - " <td>-0.539953</td>\n", |
109 | | - " <td>0</td>\n", |
110 | | - " <td>0.739484</td>\n", |
111 | | - " </tr>\n", |
112 | | - " <tr>\n", |
113 | | - " <th>4</th>\n", |
114 | | - " <td>0.778325</td>\n", |
115 | | - " <td>1.534670</td>\n", |
| 107 | + " <td>0.149978</td>\n", |
| 108 | + " <td>1.146856</td>\n", |
116 | 109 | " <td>1</td>\n", |
117 | | - " <td>4.425341</td>\n", |
118 | | - " </tr>\n", |
119 | | - " <tr>\n", |
120 | | - " <th>...</th>\n", |
121 | | - " <td>...</td>\n", |
122 | | - " <td>...</td>\n", |
123 | | - " <td>...</td>\n", |
124 | | - " <td>...</td>\n", |
| 110 | + " <td>2.831018</td>\n", |
125 | 111 | " </tr>\n", |
126 | 112 | " <tr>\n", |
127 | | - " <th>9995</th>\n", |
128 | | - " <td>0.890611</td>\n", |
129 | | - " <td>1.266610</td>\n", |
| 113 | + " <th>4</th>\n", |
| 114 | + " <td>-0.506154</td>\n", |
| 115 | + " <td>0.113415</td>\n", |
130 | 116 | " <td>0</td>\n", |
131 | | - " <td>2.732242</td>\n", |
132 | | - " </tr>\n", |
133 | | - " <tr>\n", |
134 | | - " <th>9996</th>\n", |
135 | | - " <td>1.428810</td>\n", |
136 | | - " <td>1.557557</td>\n", |
137 | | - " <td>1</td>\n", |
138 | | - " <td>5.068505</td>\n", |
139 | | - " </tr>\n", |
140 | | - " <tr>\n", |
141 | | - " <th>9997</th>\n", |
142 | | - " <td>1.678820</td>\n", |
143 | | - " <td>1.254265</td>\n", |
144 | | - " <td>1</td>\n", |
145 | | - " <td>4.317824</td>\n", |
146 | | - " </tr>\n", |
147 | | - " <tr>\n", |
148 | | - " <th>9998</th>\n", |
149 | | - " <td>1.341190</td>\n", |
150 | | - " <td>1.002567</td>\n", |
151 | | - " <td>1</td>\n", |
152 | | - " <td>4.527394</td>\n", |
153 | | - " </tr>\n", |
154 | | - " <tr>\n", |
155 | | - " <th>9999</th>\n", |
156 | | - " <td>1.330508</td>\n", |
157 | | - " <td>0.702635</td>\n", |
158 | | - " <td>1</td>\n", |
159 | | - " <td>2.982631</td>\n", |
| 117 | + " <td>-0.106079</td>\n", |
160 | 118 | " </tr>\n", |
161 | 119 | " </tbody>\n", |
162 | 120 | "</table>\n", |
163 | | - "<p>10000 rows × 4 columns</p>\n", |
164 | 121 | "</div>" |
165 | 122 | ], |
166 | 123 | "text/plain": [ |
167 | | - " x1 x2 trt outcome\n", |
168 | | - "0 1.374096 0.373163 1 6.054919\n", |
169 | | - "1 1.051587 0.834493 0 2.927939\n", |
170 | | - "2 -0.450553 0.232016 0 -0.043942\n", |
171 | | - "3 0.720264 -0.539953 0 0.739484\n", |
172 | | - "4 0.778325 1.534670 1 4.425341\n", |
173 | | - "... ... ... ... ...\n", |
174 | | - "9995 0.890611 1.266610 0 2.732242\n", |
175 | | - "9996 1.428810 1.557557 1 5.068505\n", |
176 | | - "9997 1.678820 1.254265 1 4.317824\n", |
177 | | - "9998 1.341190 1.002567 1 4.527394\n", |
178 | | - "9999 1.330508 0.702635 1 2.982631\n", |
179 | | - "\n", |
180 | | - "[10000 rows x 4 columns]" |
| 124 | + " x1 x2 trt outcome\n", |
| 125 | + "0 -0.700611 0.215690 0 -1.060506\n", |
| 126 | + "1 0.880796 1.082451 1 3.778433\n", |
| 127 | + "2 -0.121070 0.767333 0 0.617862\n", |
| 128 | + "3 0.149978 1.146856 1 2.831018\n", |
| 129 | + "4 -0.506154 0.113415 0 -0.106079" |
181 | 130 | ] |
182 | 131 | }, |
183 | | - "execution_count": 325, |
| 132 | + "execution_count": 376, |
184 | 133 | "metadata": {}, |
185 | 134 | "output_type": "execute_result" |
186 | 135 | } |
|
189 | 138 | "df1 = pd.DataFrame(np.random.multivariate_normal([0.5, 1], [[2, 1], [1, 1]], size=10000), columns=['x1', 'x2'])\n", |
190 | 139 | "df1['trt'] = np.where(-0.5 + 0.25 * df1['x1'] + 0.75 * df1['x2'] + np.random.normal(0, 1, size=10000) > 0, 1, 0)\n", |
191 | 140 | "df1['outcome'] = 2 * df1['trt'] + df1['x1'] + df1['x2'] + np.random.normal(0, 1, size=10000)\n", |
192 | | - "df1" |
| 141 | + "df1.head()" |
193 | 142 | ] |
194 | 143 | }, |
195 | 144 | { |
|
208 | 157 | }, |
209 | 158 | { |
210 | 159 | "cell_type": "code", |
211 | | - "execution_count": 338, |
| 160 | + "execution_count": 379, |
212 | 161 | "metadata": {}, |
213 | 162 | "outputs": [ |
214 | 163 | { |
|
227 | 176 | { |
228 | 177 | "data": { |
229 | 178 | "text/plain": [ |
230 | | - "<causalpy.pymc_experiments.InversePropensityWeighting at 0x2aebe6110>" |
| 179 | + "<causalpy.pymc_experiments.InversePropensityWeighting at 0x32412ee50>" |
231 | 180 | ] |
232 | 181 | }, |
233 | | - "execution_count": 338, |
| 182 | + "execution_count": 379, |
234 | 183 | "metadata": {}, |
235 | 184 | "output_type": "execute_result" |
236 | 185 | } |
|
878 | 827 | }, |
879 | 828 | { |
880 | 829 | "cell_type": "code", |
881 | | - "execution_count": 373, |
| 830 | + "execution_count": 380, |
882 | 831 | "metadata": {}, |
883 | 832 | "outputs": [ |
884 | 833 | { |
|
969 | 918 | "4 40 0 0 20 19 4.989251" |
970 | 919 | ] |
971 | 920 | }, |
972 | | - "execution_count": 373, |
| 921 | + "execution_count": 380, |
973 | 922 | "metadata": {}, |
974 | 923 | "output_type": "execute_result" |
975 | 924 | } |
|
981 | 930 | }, |
982 | 931 | { |
983 | 932 | "cell_type": "code", |
984 | | - "execution_count": 365, |
| 933 | + "execution_count": 381, |
985 | 934 | "metadata": {}, |
986 | 935 | "outputs": [ |
987 | 936 | { |
|
1000 | 949 | { |
1001 | 950 | "data": { |
1002 | 951 | "text/plain": [ |
1003 | | - "<causalpy.pymc_experiments.InversePropensityWeighting at 0x2e6f4ba90>" |
| 952 | + "<causalpy.pymc_experiments.InversePropensityWeighting at 0x3bdbaa4d0>" |
1004 | 953 | ] |
1005 | 954 | }, |
1006 | | - "execution_count": 365, |
| 955 | + "execution_count": 381, |
1007 | 956 | "metadata": {}, |
1008 | 957 | "output_type": "execute_result" |
1009 | 958 | } |
|
0 commit comments