2. **{term}`Difference in differences`:** We can apply linear modeling approaches such as `y ~ group + time + group:time` to estimate the treatment effect. Here, `y` is the outcome measure, `group` is a binary variable indicating treatment or control group, and `time` is a binary variable indicating pretest or posttest. Note that this approach has a strong assumption of [parallel trends](https://en.wikipedia.org/wiki/Difference_in_differences#Assumptions) - that the treatment and control groups would have changed in the same way in the absence of the treatment.
0 commit comments