1313import pickle
1414import shutil
1515import sys
16- from collections import OrderedDict
1716from tempfile import mkdtemp
1817
1918import numpy as np
@@ -764,11 +763,9 @@ def test_output_padding(self):
764763 b = shared (np .random .default_rng (utt .fetch_seed ()).random ((5 , 4 )))
765764
766765 def inner_func (a ):
767- return a + 1 , OrderedDict ([( b , 2 * b )])
766+ return a + 1 , { b : 2 * b }
768767
769- out , updates = scan (
770- inner_func , outputs_info = [OrderedDict ([("initial" , init_a )])], n_steps = 1
771- )
768+ out , updates = scan (inner_func , outputs_info = [{"initial" : init_a }], n_steps = 1 )
772769 out = out [- 1 ]
773770 assert out .type .ndim == a .type .ndim
774771 assert updates [b ].type .ndim == b .type .ndim
@@ -934,7 +931,7 @@ def test_only_shared_no_input_no_output(self):
934931 state = shared (v_state , "vstate" )
935932
936933 def f_2 ():
937- return OrderedDict ([( state , 2 * state )])
934+ return { state : 2 * state }
938935
939936 n_steps = iscalar ("nstep" )
940937 output , updates = scan (
@@ -968,7 +965,7 @@ def test_shared_updates(self):
968965 X = shared (np .array (1 ))
969966
970967 out , updates = scan (
971- lambda : OrderedDict ([( X , (X + 1 ))]) ,
968+ lambda : { X : (X + 1 )} ,
972969 outputs_info = [],
973970 non_sequences = [],
974971 sequences = [],
@@ -984,7 +981,7 @@ def test_shared_memory_aliasing_updates(self):
984981 y = shared (np .array (1 ))
985982
986983 out , updates = scan (
987- lambda : OrderedDict ([( x , x + 1 ), ( y , x )]) ,
984+ lambda : { x : x + 1 , y : x } ,
988985 outputs_info = [],
989986 non_sequences = [],
990987 sequences = [],
@@ -1914,7 +1911,7 @@ def test_grad_numeric_shared(self):
19141911 shared_var = shared (np .float32 (1.0 ))
19151912
19161913 def inner_fn ():
1917- return [], OrderedDict ([( shared_var , shared_var + np .float32 (1.0 ))])
1914+ return [], { shared_var : shared_var + np .float32 (1.0 )}
19181915
19191916 _ , updates = scan (
19201917 inner_fn , n_steps = 10 , truncate_gradient = - 1 , go_backwards = False
@@ -2746,7 +2743,7 @@ def one_step(x_t, h_tm1, W):
27462743
27472744 v1 = shared (np .ones (5 , dtype = config .floatX ))
27482745 v2 = shared (np .ones ((5 , 5 ), dtype = config .floatX ))
2749- shapef = function ([W ], expr , givens = OrderedDict ([( initial , v1 ), ( inpt , v2 )]) )
2746+ shapef = function ([W ], expr , givens = { initial : v1 , inpt : v2 } )
27502747 # First execution to cache n_steps
27512748 shapef (np .ones ((5 , 5 ), dtype = config .floatX ))
27522749
@@ -2755,7 +2752,7 @@ def one_step(x_t, h_tm1, W):
27552752 f = function (
27562753 [W , inpt ],
27572754 d_cost_wrt_W ,
2758- givens = OrderedDict ([( initial , shared (np .zeros (5 )))]) ,
2755+ givens = { initial : shared (np .zeros (5 ))} ,
27592756 )
27602757
27612758 rval = np .asarray ([[5187989 ] * 5 ] * 5 , dtype = config .floatX )
@@ -2956,7 +2953,7 @@ def onestep(x, x_tm4):
29562953
29572954 seq = matrix ()
29582955 initial_value = shared (np .zeros ((4 , 1 ), dtype = config .floatX ))
2959- outputs_info = [OrderedDict ([( "initial" , initial_value ), ( "taps" , [- 4 ])]) , None ]
2956+ outputs_info = [{ "initial" : initial_value , "taps" : [- 4 ]} , None ]
29602957 results , updates = scan (fn = onestep , sequences = seq , outputs_info = outputs_info )
29612958
29622959 f = function ([seq ], results [1 ])
@@ -2979,10 +2976,10 @@ def onestep(x, x_tm4):
29792976
29802977 seq = matrix ()
29812978 initial_value = shared (np .zeros ((4 , 1 ), dtype = config .floatX ))
2982- outputs_info = [OrderedDict ([( "initial" , initial_value ), ( "taps" , [- 4 ])]) , None ]
2979+ outputs_info = [{ "initial" : initial_value , "taps" : [- 4 ]} , None ]
29832980 results , _ = scan (fn = onestep , sequences = seq , outputs_info = outputs_info )
29842981 sharedvar = shared (np .zeros ((1 , 1 ), dtype = config .floatX ))
2985- updates = OrderedDict ([( sharedvar , results [0 ][- 1 :])])
2982+ updates = { sharedvar : results [0 ][- 1 :]}
29862983
29872984 f = function ([seq ], results [1 ], updates = updates )
29882985
0 commit comments