@@ -189,30 +189,6 @@ def parametric_grouped_approxes(request):
189189 return request .param
190190
191191
192- @pytest .fixture
193- def three_var_aevb_groups (parametric_grouped_approxes , three_var_model , aevb_initial ):
194- one_initial_value = three_var_model .initial_point (0 )[three_var_model .one .tag .value_var .name ]
195- dsize = np .prod (one_initial_value .shape [1 :])
196- cls , kw = parametric_grouped_approxes
197- spec = cls .get_param_spec_for (d = dsize , ** kw )
198- params = dict ()
199- for k , v in spec .items ():
200- if isinstance (k , int ):
201- params [k ] = dict ()
202- for k_i , v_i in v .items ():
203- params [k ][k_i ] = aevb_initial .dot (np .random .rand (7 , * v_i ).astype ("float32" ))
204- else :
205- params [k ] = aevb_initial .dot (np .random .rand (7 , * v ).astype ("float32" ))
206- aevb_g = cls ([three_var_model .one ], params = params , model = three_var_model , local = True )
207- return [aevb_g , MeanFieldGroup (None , model = three_var_model )]
208-
209-
210- @pytest .fixture
211- def three_var_aevb_approx (three_var_model , three_var_aevb_groups ):
212- approx = Approximation (three_var_aevb_groups , model = three_var_model )
213- return approx
214-
215-
216192def test_logq_mini_1_sample_1_var (parametric_grouped_approxes , three_var_model ):
217193 cls , kw = parametric_grouped_approxes
218194 approx = cls ([three_var_model .one ], model = three_var_model , ** kw )
0 commit comments