@@ -160,7 +160,7 @@ def prior(self, name, X, reparameterize=True, jitter=JITTER_DEFAULT, **kwargs):
160160 variable by the Cholesky factor of the covariance matrix.
161161 jitter: scalar
162162 A small correction added to the diagonal of positive semi-definite
163- covariance matrices to ensure numerical stability. Default value is 1e-6.
163+ covariance matrices to ensure numerical stability.
164164 **kwargs
165165 Extra keyword arguments that are passed to distribution constructor.
166166 """
@@ -196,7 +196,7 @@ def _build_conditional(self, Xnew, X, f, cov_total, mean_total, jitter):
196196 cov = Kss - at .dot (at .transpose (A ), A )
197197 return mu , cov
198198
199- def conditional (self , name , Xnew , given = None , jitter = 0.0 , ** kwargs ):
199+ def conditional (self , name , Xnew , given = None , jitter = JITTER_DEFAULT , ** kwargs ):
200200 R"""
201201 Returns the conditional distribution evaluated over new input
202202 locations `Xnew`.
@@ -223,8 +223,7 @@ def conditional(self, name, Xnew, given=None, jitter=0.0, **kwargs):
223223 models in PyMC for more information.
224224 jitter: scalar
225225 A small correction added to the diagonal of positive semi-definite
226- covariance matrices to ensure numerical stability. For conditionals
227- the default value is 0.0.
226+ covariance matrices to ensure numerical stability.
228227 **kwargs
229228 Extra keyword arguments that are passed to `MvNormal` distribution
230229 constructor.
@@ -324,7 +323,7 @@ def _build_conditional(self, Xnew, X, f, jitter):
324323 covT = (self .nu + beta - 2 ) / (nu2 - 2 ) * cov
325324 return nu2 , mu , covT
326325
327- def conditional (self , name , Xnew , jitter = 0.0 , ** kwargs ):
326+ def conditional (self , name , Xnew , jitter = JITTER_DEFAULT , ** kwargs ):
328327 R"""
329328 Returns the conditional distribution evaluated over new input
330329 locations `Xnew`.
@@ -341,8 +340,7 @@ def conditional(self, name, Xnew, jitter=0.0, **kwargs):
341340 Function input values.
342341 jitter: scalar
343342 A small correction added to the diagonal of positive semi-definite
344- covariance matrices to ensure numerical stability. For conditionals
345- the default value is 0.0.
343+ covariance matrices to ensure numerical stability.
346344 **kwargs
347345 Extra keyword arguments that are passed to `MvNormal` distribution
348346 constructor.
@@ -407,7 +405,9 @@ def _build_marginal_likelihood(self, X, noise, jitter):
407405 cov = Kxx + Knx
408406 return mu , stabilize (cov , jitter )
409407
410- def marginal_likelihood (self , name , X , y , noise , jitter = 0.0 , is_observed = True , ** kwargs ):
408+ def marginal_likelihood (
409+ self , name , X , y , noise , jitter = JITTER_DEFAULT , is_observed = True , ** kwargs
410+ ):
411411 R"""
412412 Returns the marginal likelihood distribution, given the input
413413 locations `X` and the data `y`.
@@ -433,7 +433,7 @@ def marginal_likelihood(self, name, X, y, noise, jitter=0.0, is_observed=True, *
433433 non-white noise.
434434 jitter: scalar
435435 A small correction added to the diagonal of positive semi-definite
436- covariance matrices to ensure numerical stability. Default value is 0.0.
436+ covariance matrices to ensure numerical stability.
437437 **kwargs
438438 Extra keyword arguments that are passed to `MvNormal` distribution
439439 constructor.
@@ -497,7 +497,9 @@ def _build_conditional(
497497 cov += noise (Xnew )
498498 return mu , cov if pred_noise else stabilize (cov , jitter )
499499
500- def conditional (self , name , Xnew , pred_noise = False , given = None , jitter = 0.0 , ** kwargs ):
500+ def conditional (
501+ self , name , Xnew , pred_noise = False , given = None , jitter = JITTER_DEFAULT , ** kwargs
502+ ):
501503 R"""
502504 Returns the conditional distribution evaluated over new input
503505 locations `Xnew`.
@@ -527,8 +529,7 @@ def conditional(self, name, Xnew, pred_noise=False, given=None, jitter=0.0, **kw
527529 models in PyMC for more information.
528530 jitter: scalar
529531 A small correction added to the diagonal of positive semi-definite
530- covariance matrices to ensure numerical stability. For conditionals
531- the default value is 0.0.
532+ covariance matrices to ensure numerical stability.
532533 **kwargs
533534 Extra keyword arguments that are passed to `MvNormal` distribution
534535 constructor.
@@ -539,7 +540,14 @@ def conditional(self, name, Xnew, pred_noise=False, given=None, jitter=0.0, **kw
539540 return pm .MvNormal (name , mu = mu , cov = cov , ** kwargs )
540541
541542 def predict (
542- self , Xnew , point = None , diag = False , pred_noise = False , given = None , jitter = 0.0 , model = None
543+ self ,
544+ Xnew ,
545+ point = None ,
546+ diag = False ,
547+ pred_noise = False ,
548+ given = None ,
549+ jitter = JITTER_DEFAULT ,
550+ model = None ,
543551 ):
544552 R"""
545553 Return the mean vector and covariance matrix of the conditional
@@ -563,15 +571,14 @@ def predict(
563571 Same as `conditional` method.
564572 jitter: scalar
565573 A small correction added to the diagonal of positive semi-definite
566- covariance matrices to ensure numerical stability. For conditionals
567- the default value is 0.0.
574+ covariance matrices to ensure numerical stability.
568575 """
569576 if given is None :
570577 given = {}
571578 mu , cov = self ._predict_at (Xnew , diag , pred_noise , given , jitter )
572579 return replace_with_values ([mu , cov ], replacements = point , model = model )
573580
574- def _predict_at (self , Xnew , diag = False , pred_noise = False , given = None , jitter = 0.0 ):
581+ def _predict_at (self , Xnew , diag = False , pred_noise = False , given = None , jitter = JITTER_DEFAULT ):
575582 R"""
576583 Return the mean vector and covariance matrix of the conditional
577584 distribution as symbolic variables.
@@ -712,7 +719,7 @@ def _build_marginal_likelihood_logp(self, y, X, Xu, sigma, jitter):
712719 return - 1.0 * (constant + logdet + quadratic + trace )
713720
714721 def marginal_likelihood (
715- self , name , X , Xu , y , noise = None , is_observed = True , jitter = 0.0 , ** kwargs
722+ self , name , X , Xu , y , noise = None , is_observed = True , jitter = JITTER_DEFAULT , ** kwargs
716723 ):
717724 R"""
718725 Returns the approximate marginal likelihood distribution, given the input
@@ -738,7 +745,7 @@ def marginal_likelihood(
738745 Default is `True`.
739746 jitter: scalar
740747 A small correction added to the diagonal of positive semi-definite
741- covariance matrices to ensure numerical stability. Default value is 0.0.
748+ covariance matrices to ensure numerical stability.
742749 **kwargs
743750 Extra keyword arguments that are passed to `MvNormal` distribution
744751 constructor.
@@ -836,7 +843,9 @@ def _get_given_vals(self, given):
836843 X , Xu , y , sigma = self .X , self .Xu , self .y , self .sigma
837844 return X , Xu , y , sigma , cov_total , mean_total
838845
839- def conditional (self , name , Xnew , pred_noise = False , given = None , jitter = 0.0 , ** kwargs ):
846+ def conditional (
847+ self , name , Xnew , pred_noise = False , given = None , jitter = JITTER_DEFAULT , ** kwargs
848+ ):
840849 R"""
841850 Returns the approximate conditional distribution of the GP evaluated over
842851 new input locations `Xnew`.
@@ -857,8 +866,7 @@ def conditional(self, name, Xnew, pred_noise=False, given=None, jitter=0.0, **kw
857866 models in PyMC for more information.
858867 jitter: scalar
859868 A small correction added to the diagonal of positive semi-definite
860- covariance matrices to ensure numerical stability. For conditionals
861- the default value is 0.0.
869+ covariance matrices to ensure numerical stability.
862870 **kwargs
863871 Extra keyword arguments that are passed to `MvNormal` distribution
864872 constructor.
@@ -968,7 +976,7 @@ def prior(self, name, Xs, jitter=JITTER_DEFAULT, **kwargs):
968976 `cartesian(*Xs)`.
969977 jitter: scalar
970978 A small correction added to the diagonal of positive semi-definite
971- covariance matrices to ensure numerical stability. Default value is 1e-6.
979+ covariance matrices to ensure numerical stability.
972980 **kwargs
973981 Extra keyword arguments that are passed to the `KroneckerNormal`
974982 distribution constructor.
@@ -998,7 +1006,7 @@ def _build_conditional(self, Xnew, jitter):
9981006 cov = stabilize (Kss - at .dot (at .transpose (A ), A ), jitter )
9991007 return mu , cov
10001008
1001- def conditional (self , name , Xnew , jitter = 0.0 , ** kwargs ):
1009+ def conditional (self , name , Xnew , jitter = JITTER_DEFAULT , ** kwargs ):
10021010 """
10031011 Returns the conditional distribution evaluated over new input
10041012 locations `Xnew`.
@@ -1027,8 +1035,7 @@ def conditional(self, name, Xnew, jitter=0.0, **kwargs):
10271035 vector with shape `(n, 1)`.
10281036 jitter: scalar
10291037 A small correction added to the diagonal of positive semi-definite
1030- covariance matrices to ensure numerical stability. For conditionals
1031- the default value is 0.0.
1038+ covariance matrices to ensure numerical stability.
10321039 **kwargs
10331040 Extra keyword arguments that are passed to `MvNormal` distribution
10341041 constructor.
0 commit comments