@@ -428,8 +428,8 @@ def prior(
428428 self ,
429429 name : str ,
430430 X : TensorLike ,
431+ dims : str | None = None ,
431432 hsgp_coeffs_dims : str | None = None ,
432- gp_dims : str | None = None ,
433433 * args ,
434434 ** kwargs ,
435435 ):
@@ -444,10 +444,11 @@ def prior(
444444 Name of the random variable
445445 X: array-like
446446 Function input values.
447+ dims: str, default None
448+ Dimension name for the GP random variable.
447449 hsgp_coeffs_dims: str, default None
448450 Dimension name for the HSGP basis vectors.
449- gp_dims: str, default None
450- Dimension name for the GP random variable.
451+
451452 """
452453 phi , sqrt_psd = self .prior_linearized (X )
453454 self ._sqrt_psd = sqrt_psd
@@ -469,7 +470,7 @@ def prior(
469470 )
470471 f = self .mean_func (X ) + phi @ self ._beta
471472
472- self .f = pm .Deterministic (name , f , dims = gp_dims )
473+ self .f = pm .Deterministic (name , f , dims = dims )
473474 return self .f
474475
475476 def _build_conditional (self , Xnew ):
@@ -695,7 +696,9 @@ def prior_linearized(self, X: TensorLike):
695696 psd = self .scale * self .cov_func .power_spectral_density_approx (J )
696697 return (phi_cos , phi_sin ), psd
697698
698- def prior (self , name : str , X : TensorLike , dims : str | None = None ): # type: ignore[override]
699+ def prior ( # type: ignore[override]
700+ self , name : str , X : TensorLike , dims : str | None = None , hsgp_coeffs_dims : str | None = None
701+ ):
699702 R"""
700703 Return the (approximate) GP prior distribution evaluated over the input locations `X`.
701704
@@ -709,11 +712,13 @@ def prior(self, name: str, X: TensorLike, dims: str | None = None): # type: ign
709712 Function input values.
710713 dims: None
711714 Dimension name for the GP random variable.
715+ hsgp_coeffs_dims: str | None = None
716+ Dimension name for the HSGPPeriodic basis vectors.
712717 """
713718 (phi_cos , phi_sin ), psd = self .prior_linearized (X )
714719
715720 m = self ._m
716- self ._beta = pm .Normal (f"{ name } _hsgp_coeffs_" , size = (m * 2 - 1 ))
721+ self ._beta = pm .Normal (f"{ name } _hsgp_coeffs_" , size = (m * 2 - 1 ), dims = hsgp_coeffs_dims )
717722 # The first eigenfunction for the sine component is zero
718723 # and so does not contribute to the approximation.
719724 f = (
0 commit comments