@@ -617,13 +617,27 @@ def full_from_distance(self, dist: TensorLike, squared: bool = False) -> TensorV
617617
618618class Matern52 (Stationary ):
619619 r"""
620- The Matern kernel with nu = 5/2 .
620+ The Matérn kernel with :math:`\ nu = \frac{5}{2}` .
621621
622622 .. math::
623623
624624 k(x, x') = \left(1 + \frac{\sqrt{5(x - x')^2}}{\ell} +
625625 \frac{5(x-x')^2}{3\ell^2}\right)
626626 \mathrm{exp}\left[ - \frac{\sqrt{5(x - x')^2}}{\ell} \right]
627+
628+ Read more `here <https://en.wikipedia.org/wiki/Mat%C3%A9rn_covariance_function>`_.
629+
630+ Parameters
631+ ----------
632+ input_dim : int
633+ The number of input dimensions
634+ ls : scalar or array, optional
635+ Lengthscale parameter :math:`\ell`; if `input_dim` > 1, a list or array of scalars.
636+ If `input_dim` == 1, a scalar.
637+ ls_inv : scalar or array, optional
638+ Inverse lengthscale :math:`1 / \ell`. One of `ls` or `ls_inv` must be provided.
639+ active_dims : list of int, optional
640+ The dimension(s) the covariance function operates on.
627641 """
628642
629643 def full_from_distance (self , dist : TensorLike , squared : bool = False ) -> TensorVariable :
@@ -657,12 +671,26 @@ def power_spectral_density(self, omega: TensorLike) -> TensorVariable:
657671
658672class Matern32 (Stationary ):
659673 r"""
660- The Matern kernel with nu = 3/2 .
674+ The Matérn kernel with :math:`\ nu = \frac{3}{2}` .
661675
662676 .. math::
663677
664678 k(x, x') = \left(1 + \frac{\sqrt{3(x - x')^2}}{\ell}\right)
665679 \mathrm{exp}\left[ - \frac{\sqrt{3(x - x')^2}}{\ell} \right]
680+
681+ Read more `here <https://en.wikipedia.org/wiki/Mat%C3%A9rn_covariance_function>`_.
682+
683+ Parameters
684+ ----------
685+ input_dim : int
686+ The number of input dimensions
687+ ls : scalar or array, optional
688+ Lengthscale parameter :math:`\ell`; if `input_dim` > 1, a list or array of scalars.
689+ If `input_dim` == 1, a scalar.
690+ ls_inv : scalar or array, optional
691+ Inverse lengthscale :math:`1 / \ell`. One of `ls` or `ls_inv` must be provided.
692+ active_dims : list of int, optional
693+ The dimension(s) the covariance function operates on.
666694 """
667695
668696 def full_from_distance (self , dist : TensorLike , squared : bool = False ) -> TensorVariable :
0 commit comments