3939__all__ = ["TP" , "Latent" , "LatentKron" , "Marginal" , "MarginalApprox" , "MarginalKron" ]
4040
4141
42- _noise_deprecation_warning = (
43- "The 'noise' parameter has been been changed to 'sigma' "
44- "in order to standardize the GP API and will be "
45- "deprecated in future releases."
46- )
47-
48-
49- def _handle_sigma_noise_parameters (sigma , noise ):
50- """Help transition of 'noise' parameter to be named 'sigma'."""
51- if (sigma is None and noise is None ) or (sigma is not None and noise is not None ):
52- raise ValueError ("'sigma' argument must be specified." )
53-
54- if sigma is None :
55- warnings .warn (_noise_deprecation_warning , FutureWarning )
56- return noise
57-
58- return sigma
59-
60-
6142class Base :
6243 """Base class."""
6344
@@ -477,8 +458,7 @@ def marginal_likelihood(
477458 name ,
478459 X ,
479460 y ,
480- sigma = None ,
481- noise = None ,
461+ sigma ,
482462 jitter = JITTER_DEFAULT ,
483463 is_observed = True ,
484464 ** kwargs ,
@@ -505,8 +485,6 @@ def marginal_likelihood(
505485 sigma : float, Variable, or Covariance, default ~pymc.gp.cov.WhiteNoise
506486 Standard deviation of the Gaussian noise. Can also be a Covariance for
507487 non-white noise.
508- noise : float, Variable, or Covariance, optional
509- Deprecated. Previous parameterization of `sigma`.
510488 jitter : float, default 1e-6
511489 A small correction added to the diagonal of positive semi-definite
512490 covariance matrices to ensure numerical stability.
@@ -516,8 +494,6 @@ def marginal_likelihood(
516494 Extra keyword arguments that are passed to :class:`~pymc.MvNormal` distribution
517495 constructor.
518496 """
519- sigma = _handle_sigma_noise_parameters (sigma = sigma , noise = noise )
520-
521497 noise_func = sigma if isinstance (sigma , BaseCovariance ) else pm .gp .cov .WhiteNoise (sigma )
522498 mu , cov = self ._build_marginal_likelihood (X = X , noise_func = noise_func , jitter = jitter )
523499 self .X = X
@@ -544,10 +520,6 @@ def _get_given_vals(self, given):
544520 cov_total = self .cov_func
545521 mean_total = self .mean_func
546522
547- if "noise" in given :
548- warnings .warn (_noise_deprecation_warning , FutureWarning )
549- given ["sigma" ] = given ["noise" ]
550-
551523 if all (val in given for val in ["X" , "y" , "sigma" ]):
552524 X , y , sigma = given ["X" ], given ["y" ], given ["sigma" ]
553525 noise_func = sigma if isinstance (sigma , BaseCovariance ) else pm .gp .cov .WhiteNoise (sigma )
@@ -804,9 +776,7 @@ def _build_marginal_likelihood_loglik(self, y, X, Xu, sigma, jitter):
804776 quadratic = 0.5 * (pt .dot (r , r_l ) - pt .dot (c , c ))
805777 return - 1.0 * (constant + logdet + quadratic + trace )
806778
807- def marginal_likelihood (
808- self , name , X , Xu , y , sigma = None , noise = None , jitter = JITTER_DEFAULT , ** kwargs
809- ):
779+ def marginal_likelihood (self , name , X , Xu , y , sigma , jitter = JITTER_DEFAULT , ** kwargs ):
810780 R"""
811781 Return the approximate marginal likelihood distribution.
812782
@@ -827,8 +797,6 @@ def marginal_likelihood(
827797 noise. Must have shape `(n, )`.
828798 sigma : float, Variable
829799 Standard deviation of the Gaussian noise.
830- noise : float, Variable, optional
831- Previous parameterization of `sigma`.
832800 jitter : float, default 1e-6
833801 A small correction added to the diagonal of positive semi-definite
834802 covariance matrices to ensure numerical stability.
@@ -840,7 +808,7 @@ def marginal_likelihood(
840808 self .Xu = Xu
841809 self .y = y
842810
843- self .sigma = _handle_sigma_noise_parameters ( sigma = sigma , noise = noise )
811+ self .sigma = sigma
844812
845813 approx_loglik = self ._build_marginal_likelihood_loglik (
846814 y = self .y , X = self .X , Xu = self .Xu , sigma = self .sigma , jitter = jitter
0 commit comments