@@ -196,9 +196,9 @@ def create_structural_model_and_equivalent_statsmodel(
196196 components = []
197197
198198 if irregular :
199- sigma = np .abs (rng .normal (size = (1 ,))).astype (floatX )
200- params ["sigma_irregular" ] = sigma
201- sm_params ["sigma2.irregular" ] = sigma .item ()
199+ sigma2 = np .abs (rng .normal (size = (1 ,))).astype (floatX )
200+ params ["sigma_irregular" ] = np . sqrt ( sigma2 )
201+ sm_params ["sigma2.irregular" ] = sigma2 .item ()
202202 expected_param_dims ["sigma_irregular" ] += ("observed_state" ,)
203203
204204 comp = st .MeasurementError ("irregular" )
@@ -255,7 +255,7 @@ def create_structural_model_and_equivalent_statsmodel(
255255 ).astype (floatX ),
256256 np .zeros (2 , dtype = floatX ),
257257 )
258- sigma_level_value = np .abs (rng .normal (size = (2 ,)))[
258+ sigma_level_value2 = np .abs (rng .normal (size = (2 ,)))[
259259 np .array (level_trend_innov_order , dtype = "bool" )
260260 ]
261261 max_order = np .flatnonzero (level_value )[- 1 ].item () + 1
@@ -267,9 +267,9 @@ def create_structural_model_and_equivalent_statsmodel(
267267
268268 if sum (level_trend_innov_order ) > 0 :
269269 expected_param_dims ["sigma_trend" ] += ("trend_shock" ,)
270- params ["sigma_trend" ] = sigma_level_value
270+ params ["sigma_trend" ] = np . sqrt ( sigma_level_value2 )
271271
272- sigma_level_value = sigma_level_value .tolist ()
272+ sigma_level_value = sigma_level_value2 .tolist ()
273273 if stochastic_level :
274274 sigma = sigma_level_value .pop (0 )
275275 sm_params ["sigma2.level" ] = sigma
@@ -298,9 +298,9 @@ def create_structural_model_and_equivalent_statsmodel(
298298 sm_init .update (seasonal_dict )
299299
300300 if stochastic_seasonal :
301- sigma = np .abs (rng .normal (size = (1 ,))).astype (floatX )
302- params ["sigma_seasonal" ] = sigma
303- sm_params ["sigma2.seasonal" ] = sigma
301+ sigma2 = np .abs (rng .normal (size = (1 ,))).astype (floatX )
302+ params ["sigma_seasonal" ] = np . sqrt ( sigma2 )
303+ sm_params ["sigma2.seasonal" ] = sigma2
304304 expected_coords [SHOCK_DIM ] += [
305305 "seasonal" ,
306306 ]
@@ -343,9 +343,9 @@ def create_structural_model_and_equivalent_statsmodel(
343343 state_count += 1
344344
345345 if has_innov :
346- sigma = np .abs (rng .normal (size = (1 ,))).astype (floatX )
347- params [f"sigma_seasonal_{ s } " ] = sigma
348- sm_params [f"sigma2.freq_seasonal_{ s } ({ n } )" ] = sigma
346+ sigma2 = np .abs (rng .normal (size = (1 ,))).astype (floatX )
347+ params [f"sigma_seasonal_{ s } " ] = np . sqrt ( sigma2 )
348+ sm_params [f"sigma2.freq_seasonal_{ s } ({ n } )" ] = sigma2
349349 expected_coords [SHOCK_DIM ] += state_names
350350 expected_coords [SHOCK_AUX_DIM ] += state_names
351351
@@ -374,12 +374,12 @@ def create_structural_model_and_equivalent_statsmodel(
374374 sm_init ["cycle.auxilliary" ] = init_cycle [1 ]
375375
376376 if stochastic_cycle :
377- sigma = np .abs (rng .normal (size = (1 ,))).astype (floatX )
378- params ["sigma_cycle" ] = sigma
377+ sigma2 = np .abs (rng .normal (size = (1 ,))).astype (floatX )
378+ params ["sigma_cycle" ] = np . sqrt ( sigma2 )
379379 expected_coords [SHOCK_DIM ] += state_names
380380 expected_coords [SHOCK_AUX_DIM ] += state_names
381381
382- sm_params ["sigma2.cycle" ] = sigma
382+ sm_params ["sigma2.cycle" ] = sigma2
383383
384384 if damped_cycle :
385385 rho = rng .beta (1 , 1 , size = (1 ,)).astype (floatX )
@@ -398,18 +398,18 @@ def create_structural_model_and_equivalent_statsmodel(
398398 if autoregressive is not None :
399399 ar_names = [f"L{ i + 1 } .data" for i in range (autoregressive )]
400400 ar_params = rng .normal (size = (autoregressive ,)).astype (floatX )
401- sigma = np .abs (rng .normal (size = (1 ,))).astype (floatX )
401+ sigma2 = np .abs (rng .normal (size = (1 ,))).astype (floatX )
402402
403403 params ["ar_params" ] = ar_params
404- params ["sigma_ar" ] = sigma
404+ params ["sigma_ar" ] = np . sqrt ( sigma2 )
405405 expected_param_dims ["ar_params" ] += (AR_PARAM_DIM ,)
406406 expected_coords [AR_PARAM_DIM ] += tuple (list (range (1 , autoregressive + 1 )))
407407 expected_coords [ALL_STATE_DIM ] += ar_names
408408 expected_coords [ALL_STATE_AUX_DIM ] += ar_names
409409 expected_coords [SHOCK_DIM ] += ["ar_innovation" ]
410410 expected_coords [SHOCK_AUX_DIM ] += ["ar_innovation" ]
411411
412- sm_params ["sigma2.ar" ] = sigma
412+ sm_params ["sigma2.ar" ] = sigma2
413413 for i , rho in enumerate (ar_params ):
414414 sm_init [f"ar.L{ i + 1 } " ] = 0
415415 sm_params [f"ar.L{ i + 1 } " ] = rho
0 commit comments