|
3 | 3 | # Copyright (c) 2020 Claudiu Popa <pcmanticore@gmail.com> |
4 | 4 | # Copyright (c) 2021 Pierre Sassoulas <pierre.sassoulas@gmail.com> |
5 | 5 | # Copyright (c) 2021 Marc Mueller <30130371+cdce8p@users.noreply.github.com> |
6 | | - |
7 | | -# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html |
8 | | -# For details: https://github.com/PyCQA/astroid/blob/main/LICENSE |
9 | | - |
10 | | - |
11 | | -"""Astroid hooks for scipy.signal module.""" |
12 | | -from astroid.brain.helpers import register_module_extender |
13 | | -from astroid.builder import parse |
14 | | -from astroid.manager import AstroidManager |
15 | | - |
16 | | - |
17 | | -def scipy_signal(): |
18 | | - return parse( |
19 | | - """ |
20 | | - # different functions defined in scipy.signals |
21 | | -
|
22 | | - def barthann(M, sym=True): |
23 | | - return numpy.ndarray([0]) |
24 | | -
|
25 | | - def bartlett(M, sym=True): |
26 | | - return numpy.ndarray([0]) |
27 | | -
|
28 | | - def blackman(M, sym=True): |
29 | | - return numpy.ndarray([0]) |
30 | | -
|
31 | | - def blackmanharris(M, sym=True): |
32 | | - return numpy.ndarray([0]) |
33 | | -
|
34 | | - def bohman(M, sym=True): |
35 | | - return numpy.ndarray([0]) |
36 | | -
|
37 | | - def boxcar(M, sym=True): |
38 | | - return numpy.ndarray([0]) |
39 | | -
|
40 | | - def chebwin(M, at, sym=True): |
41 | | - return numpy.ndarray([0]) |
42 | | -
|
43 | | - def cosine(M, sym=True): |
44 | | - return numpy.ndarray([0]) |
45 | | -
|
46 | | - def exponential(M, center=None, tau=1.0, sym=True): |
47 | | - return numpy.ndarray([0]) |
48 | | -
|
49 | | - def flattop(M, sym=True): |
50 | | - return numpy.ndarray([0]) |
51 | | -
|
52 | | - def gaussian(M, std, sym=True): |
53 | | - return numpy.ndarray([0]) |
54 | | -
|
55 | | - def general_gaussian(M, p, sig, sym=True): |
56 | | - return numpy.ndarray([0]) |
57 | | -
|
58 | | - def hamming(M, sym=True): |
59 | | - return numpy.ndarray([0]) |
60 | | -
|
61 | | - def hann(M, sym=True): |
62 | | - return numpy.ndarray([0]) |
63 | | -
|
64 | | - def hanning(M, sym=True): |
65 | | - return numpy.ndarray([0]) |
66 | | -
|
67 | | - def impulse2(system, X0=None, T=None, N=None, **kwargs): |
68 | | - return numpy.ndarray([0]), numpy.ndarray([0]) |
69 | | -
|
70 | | - def kaiser(M, beta, sym=True): |
71 | | - return numpy.ndarray([0]) |
72 | | -
|
73 | | - def nuttall(M, sym=True): |
74 | | - return numpy.ndarray([0]) |
75 | | -
|
76 | | - def parzen(M, sym=True): |
77 | | - return numpy.ndarray([0]) |
78 | | -
|
79 | | - def slepian(M, width, sym=True): |
80 | | - return numpy.ndarray([0]) |
81 | | -
|
82 | | - def step2(system, X0=None, T=None, N=None, **kwargs): |
83 | | - return numpy.ndarray([0]), numpy.ndarray([0]) |
84 | | -
|
85 | | - def triang(M, sym=True): |
86 | | - return numpy.ndarray([0]) |
87 | | -
|
88 | | - def tukey(M, alpha=0.5, sym=True): |
89 | | - return numpy.ndarray([0]) |
90 | | - """ |
91 | | - ) |
92 | | - |
93 | | - |
94 | | -register_module_extender(AstroidManager(), "scipy.signal", scipy_signal) |
| 6 | + |
| 7 | +# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html |
| 8 | +# For details: https://github.com/PyCQA/astroid/blob/main/LICENSE |
| 9 | + |
| 10 | + |
| 11 | +"""Astroid hooks for scipy.signal module.""" |
| 12 | +from astroid.brain.helpers import register_module_extender |
| 13 | +from astroid.builder import parse |
| 14 | +from astroid.manager import AstroidManager |
| 15 | + |
| 16 | + |
| 17 | +def scipy_signal(): |
| 18 | + return parse( |
| 19 | + """ |
| 20 | + # different functions defined in scipy.signals |
| 21 | +
|
| 22 | + def barthann(M, sym=True): |
| 23 | + return numpy.ndarray([0]) |
| 24 | +
|
| 25 | + def bartlett(M, sym=True): |
| 26 | + return numpy.ndarray([0]) |
| 27 | +
|
| 28 | + def blackman(M, sym=True): |
| 29 | + return numpy.ndarray([0]) |
| 30 | +
|
| 31 | + def blackmanharris(M, sym=True): |
| 32 | + return numpy.ndarray([0]) |
| 33 | +
|
| 34 | + def bohman(M, sym=True): |
| 35 | + return numpy.ndarray([0]) |
| 36 | +
|
| 37 | + def boxcar(M, sym=True): |
| 38 | + return numpy.ndarray([0]) |
| 39 | +
|
| 40 | + def chebwin(M, at, sym=True): |
| 41 | + return numpy.ndarray([0]) |
| 42 | +
|
| 43 | + def cosine(M, sym=True): |
| 44 | + return numpy.ndarray([0]) |
| 45 | +
|
| 46 | + def exponential(M, center=None, tau=1.0, sym=True): |
| 47 | + return numpy.ndarray([0]) |
| 48 | +
|
| 49 | + def flattop(M, sym=True): |
| 50 | + return numpy.ndarray([0]) |
| 51 | +
|
| 52 | + def gaussian(M, std, sym=True): |
| 53 | + return numpy.ndarray([0]) |
| 54 | +
|
| 55 | + def general_gaussian(M, p, sig, sym=True): |
| 56 | + return numpy.ndarray([0]) |
| 57 | +
|
| 58 | + def hamming(M, sym=True): |
| 59 | + return numpy.ndarray([0]) |
| 60 | +
|
| 61 | + def hann(M, sym=True): |
| 62 | + return numpy.ndarray([0]) |
| 63 | +
|
| 64 | + def hanning(M, sym=True): |
| 65 | + return numpy.ndarray([0]) |
| 66 | +
|
| 67 | + def impulse2(system, X0=None, T=None, N=None, **kwargs): |
| 68 | + return numpy.ndarray([0]), numpy.ndarray([0]) |
| 69 | +
|
| 70 | + def kaiser(M, beta, sym=True): |
| 71 | + return numpy.ndarray([0]) |
| 72 | +
|
| 73 | + def nuttall(M, sym=True): |
| 74 | + return numpy.ndarray([0]) |
| 75 | +
|
| 76 | + def parzen(M, sym=True): |
| 77 | + return numpy.ndarray([0]) |
| 78 | +
|
| 79 | + def slepian(M, width, sym=True): |
| 80 | + return numpy.ndarray([0]) |
| 81 | +
|
| 82 | + def step2(system, X0=None, T=None, N=None, **kwargs): |
| 83 | + return numpy.ndarray([0]), numpy.ndarray([0]) |
| 84 | +
|
| 85 | + def triang(M, sym=True): |
| 86 | + return numpy.ndarray([0]) |
| 87 | +
|
| 88 | + def tukey(M, alpha=0.5, sym=True): |
| 89 | + return numpy.ndarray([0]) |
| 90 | + """ |
| 91 | + ) |
| 92 | + |
| 93 | + |
| 94 | +register_module_extender(AstroidManager(), "scipy.signal", scipy_signal) |
0 commit comments